MATHEMATICS

Duration: Three Hours

- > Read the following instructions carefully.
- 1. This questions paper contains 90 objective questions. Q. 1–30 carry 1 mark each and Q. 30–90 carry 2 marks each.
- 2. Answer all the questions.
- 3. Questions must be answered on special machine gradable Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. Each equation has only one correct answer. In case you wish to change an answer, erase the old answer completely using a good soft eraser.
- 4. There will be negative marking. For each wrong answer, 0.25 marks from Q. 1–30 and 0.5 marks from Q. 31–90 will be deducted. More than one answer marked against a question will be deemed as an incorrect response and will be negatively marked.
- 5. Write your registration number, name and name of the Centre at the specified locations on the right half of the ORS.
- 6. Using HB pencil, darken the appropriate bubble under each digit of your registration number.
- 7. Using HB pencil, darken the appropriate bubble under the letters corresponding to your paper code.
- 8. No charts or tables are provided in the examination hall.
- 9. Use the blank pages given at the end of the question paper for rough work.
- 10. Choose the closet numerical number among the choices given.
- 11. This question paper contains 24 printed pages. Please report, if there is any discrepancy.

ONE MARKS QUESTIONS (1-30)

The symbols, N,Z,Q,R and C denote the set of natural numbers, integers, rational numbers, real numbers and complex numbers, respectively, throughout the paper.

- 1. Let S and T be two subspace of R^{24} such that dim (S) = 19 and dim (T) = 17. Then, the
 - (a.) Smallest possible value of dim $(S \cap T)$
 - is 2

Maximum Marks: 150

- (b.)Largest possible value of $\dim(S \cap T)$ is 18
- (c.) Smallest possible value of $\dim(S+T)$ is 19
- (d.)Largest possible value of $\dim(S+T)$ is 22
- 2. Let $v_1 = (1, 2, 0, 3, 0), v_2 = (1, 2, -1, -1, 0),$ $v_3 = (0, 0, 1, 4, 0), v_4 = (2, 4, 1, 10, 1)$ and $v_5 (0, 0, 0, 0, 1).$ The dimension of the linear span of $(v_1, v_2, v_3, v_4, v_5)$ is

3.

- The set $V = \{(x, y) \in R^2 : xy \ge 0\}$ is
 - (a.) A vector subspace of \mathbb{R}^2
 - (b.)Not a vector subspace of R² since every element does not have an inverse in V
 - (c.) Not a vector subspace of R^2 since it is not closed under scalar multiplication
 - (d.)Not a vector subspace of R^2 since it is not closed under vector addition
- 4. Let $f: \mathbb{R}^4 \to \mathbb{R}$ be a linear functional defined by $f(x_1, x_2, x_3, x_4) = -x_2$. If $\langle .,. \rangle$ denotes the standard inner product on \mathbb{R}^4 , then the unique vector $v \in \mathbb{R}^4$ such that $f(w) = \langle v, w \rangle$ for all $w \in \mathbb{R}^4$ is (a.) (0, -1, 0, 0)

 - (b.)(-1,0,-1,1)
 - (c.)(0,1,0,0)
 - (d.)(1,0,1,-1)

www.dipsacademy.com

5. If D is the open unit disk in C and $f: C \rightarrow D$ is analytic with f(10) = 1/2, then f(10+i) is

(a.)
$$\frac{1+i}{2}$$

(b.) $\frac{1-i}{2}$

(c.)
$$\frac{1}{2}$$

(d.) $\frac{i}{2}$

6. The real part of the principal value of 4^{4-i} is

(a.) 256 cos (ln 4)

(b.)64 cos (ln 4)

(c.) 16 cos (ln 4) (d.)4 cos (ln 4)

7. If $\sin z \sum_{n=0}^{\infty} a_n (z - \pi/4)^n$, then a_6 equals (a.) 0 (b.) 1

(0.)
$$\frac{1}{720}$$

(c.) $\frac{1}{(720\sqrt{2})}$

 $(d.) \frac{-1}{\left(720\sqrt{2}\right)}$

8. The equation x⁶ - x - 1 = 0 has
(a.) No positive real roots
(b.) Exactly one positive real root
(c.) Exactly two positive real roots
(d.) All positive real roots

9. Let
$$f, g: (0,1) \times (0,1) \rightarrow R$$
 be two
continuous functions defined by
 $f(x, y) = \frac{1}{1 + x(1 - y)}$ and

$$g(x, y) = \frac{1}{1 + x(y-1)}$$
. Then, on
(0,1)×(0,1)

- (a.) *f* and g are both uniformly continuous
- (b.) f is uniformly continuous but g is not
- (c.) g is uniformly continuous but f is not

Mathematics

- (d.)Neither *f* nor g is uniformly continuous
- 10. Let S be the surface bounding the region $x^2 + y^2 \le 1, x \ge 0, y \ge 0 |z| \le 1$, and \hat{n} be the unit outer normal to S. Then $\iint_{s} \left[(\sin^2 x) \hat{i} + 2y \hat{j} z (1 \sin 2x) \hat{k} \right]. \quad \hat{n} dS$ equals

(a.) 1

(c.) π (d.)2π

12.

(b.)

11. Let $f:[0,\infty) \to R$ be defined by

$$f(x) = \begin{cases} -\frac{1}{\sqrt{x}}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

Consider the two improper integrals $I_1 = \int_0^1 f(x) dx$ and $I_2 = \int_1^\infty f(x) dx$. Then

- (a.) Both I_1 and I_2 exist
- (b.) I_1 exist but I_2 does not
- (c.) I_1 does not exist but I_2 does
- (d.)Neither I_1 nor I_2 exists

The orthogonal trajectories to the family of straight lines $y = k(x-1), k \in R$, are given by

(a.)
$$(x-1)^2 + (y-1)^2 = c^2$$

(b.) $x^2 + y^2 = c^2$
(c.) $x^2 + (y-1)^2 = c^2$
(d.) $(x-1)^2 + y^2 = c^2$

13. If $y = \varphi(x)$ is a particular solution of $y'' + (\sin x) y' + 2y = e^x$ and $y = \psi(x)$ is a particular solution of $y'' + (\sin x) y' + 2y = \cos 2x$, then a particular solution of $y'' + (\sin x) y' + 2y = e^x + 2\sin^2 x$, is given by

(a.)
$$\varphi(x) - \psi(x) + \frac{1}{2}$$

(b.) $\psi(x) - \varphi(x) + \frac{1}{2}$

14. Let $P_n(x)$ be the Legendre polynomial of ¹⁰

degree $n \le 0$. If $1 + x^{10} = \sum_{n=0}^{10} c_n P_n(x)$, then c₅ equals (a.) 0 (b.) $\frac{2}{11}$ (c.) 1

$$(d.)\frac{11}{2}$$

15. Let I be the set of irrational real numbers and let $G = I \cup \{0\}$. Then, under the usual addition of real numbers, G is

- (a.) A group, since R and Q are groups under addition
- (b.)A group, since the additive identity is in G
- (c.) Not a group, since addition on G is not a binary operation
- (d.)Not a group, since not all elements in G have an inverse
- 16. In the group (Z, +), the subgroup generated by 2 and 7 is

(a.)Z

- (b.)5Z
- (c.)9Z
- (d.)14Z
- 17. The cardinality of the centre of Z_{12} is
 - (a.) 1
 - (b.)2
 - (c.)3
 - (d.)12
- 18. Suppose $X = (1, \infty)$ and $T: X \to X$ is such that d(Tx, Ty) < d(x, y) for $x \neq y$. Then
 - (a.) T has at most one fixed point
 - (b.) T has a unique fixed point, by Banach Contraction Theorem
 - (c.) T has infinitely many fixed points
 - (d.) For every $x \in X$, $\{T^n(x)\}$ converges to a fixed point

Consider R^2 with $\| \cdot \|_{1}$ norm and $M = \{(x,0)\}: x \in R\}$. Define $g: M \to R$ by g(x, y) = x. Then a Hahn-Banach extension f of g is given by (a.) f(x, y) = 2x(b.) f(x, y) = x + y(c.) f(x, y) = x - 2y(d.) f(x, y) = x + 2yLet X be an inner product space and $S \subset X$. Then it follows that (a.) $S \perp$ has nonempty interior (b.) $S \perp = (0)$ (c.) $S \perp$ is a closed subspace $(\mathbf{d}.)(S\perp)\perp = S$ An iterative scheme is given by $\frac{1}{5} \left(16 - \frac{12}{x} \right), n \in \mathbb{N} \cup \{0\}.$ Such a scheme, with suitable x_0 will (a.) Not converge (b.)Converge to 1.6 (c.) Converge to 1.8 (d.)Converge to 2 In the (x,t) plane, the characteristics of the initial value problem $u_t + uu_x = 0$, with $u(x, 0) = x, 0 \le x \le 1$, are (a.) Parallel straight lines (b.) Straight lines which intersect at (0, -1)(c.) Non-intersecting parabolas (d.)Concentric circles with centre at the origin u(x, y) satisfies Suppose Laplace's equation: $\nabla^2 u = 0$ in \mathbb{R}^2 and u = x on the unit circle. Then, at the origin (a.) u tends to infinity (b.) u attains a finite minimum (c.) u attains a finite maximum (d.) u is equal to 0

www.dipsacademy.com

19.

20.

21.

22.

23.

24. A circular disk of radius a and mass m is supported on a needle at its centre. The disk is set spinning with initial angular

www.dipsacademy.com

velocity ω_0 about an axis making an angle

 $\pi/6$ with the normal to the disk. If $\overline{\omega}(t)$

is the angular velocity of the disk at any time t, then its component along the normal equals

(a.)
$$\frac{\sqrt{3}\omega_0}{2}$$

(b.) ω_0

(c.) $\omega_0 \sin t$

$$(d.)\left(\frac{\sqrt{3}\omega_0}{2}\right)\cos t$$

25. In \mathbb{R}^2 with usual topology, the set $U\left\{(x, -y) \in \mathbb{R}^2 : x = 0, 1, -1 \text{ and } y \in N\right\}$ is (a.) Neither closed nor bounded (b.) Closed but not bounded

27.

(c.) Bounded but not closed
(d.) Closed and bounded
In R³ with usual topology, let

$$V = \{(x, y, z) \in R^3 : x^2 + y^2 + z^2 = 1, y \neq 0\}$$

and $W = \{(x, y, z) \in R^3 : y = 0\}$. Then
 $V \cup W$ is
(a.) Connected and compact
(b.) Connected but not compact
(c.) Compact but not connected
(d.) Neither connected nor compact
Suppose X is a random variable, c is a
constant and $a_n = E(X - c)^n$ is finite for
all $n \ge 1$. Then $P(X = c) = 1$ if and only if
 $a_n = 0$ for
(a.) At least one $n \ge 1$
(b.) At least one odd n

- (c.) At least one even n(d.) At least two values of n
- 28. If the random vector $(X_1, X_2)^T$ has a bivariate normal distribution with mean vector $(\mu, \mu)^T$ and the matrix $(E(X_i X_j))_{1 \le i, j \le 2}$ equals $\begin{pmatrix} \alpha_1 & \mu^2 \\ \mu^2 & \alpha_2 \end{pmatrix}$, where $\mu \in R$ and $\alpha_1 \alpha_2 > \mu^2$, then X₁ and X₂ are (a.) Independent for all α_1 and α_2

- (b.) Independent if and only if $\alpha_1 = \alpha_2$
- (c.) Uncorrelated, but not independent for all α_1, α_2
- (d.)Un correlated if and only if $\alpha_1 = \alpha_2$ and in this case they are not independent
- 29. If the cost matrix for an assignment problem is given by

$$\begin{pmatrix}
a & b & c & d \\
b & c & d & a \\
c & d & a & b \\
d & a & b & c
\end{pmatrix}$$

Where a, b, c, d > 0, then the value of the assignment problem is

(a.) a + b + c + d

30.

- (b.) $\min\{a, b, c, d\}$
- (c.) max $\{a,b,c,d\}$
- (d.) $4\min\{a, b, c, d\}$

Extremals for the variational problem $v[y(x)] = \int_{1}^{2} (y^{2} + x^{2}y^{2}) dx$ satisfy the differential equation (a.) $x^{2}y'' + 2xy' - y = 0$

(b.)
$$x^2 y'' - 2xy' + y = 0$$

(c.) 2xy' - y = 0

(d.)
$$x^2 y'' - y = 0$$

31. Let V be the subspace of \mathbb{R}^3 spanned by u = (1,1,1) and v = (1,1-1). The orthonormal basis of V obtained by the Gram-Schmidt process on the ordered basis (u, v) of V is

(a.)
$$\left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(\frac{2}{3}, \frac{2}{3}, -\frac{4}{3} \right) \right\}$$

(b.) $\left\{ (1,1,0), (1,0,1) \right\}$

(c.)
$$\left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}} \right) \right\}$$

(d.) $\left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}} \right) \right\}$
In $P^2 / (x, y) (x, y) =$

32. In R^2 , $\langle (x_1, y_1), (x_2, y_2) \rangle =$

GATE - 2004 www.dipsacademy.com $x_1x_2 - \alpha (x_2y_1 + x_1y_2) + y_1y_2$ is an inner (c.) 2 (d.)1 product $\int_0^{2\pi} \frac{d\theta}{13 - 5\sin\theta} =$ (a.) For all $\alpha \in R$ 38. (b.) If and only if $\alpha = 0$ (a.) $-\frac{\pi}{6}$ (c.) If and only if $\alpha < 1$ (d.) If and only if $|\alpha| < 1$ (b.) $-\frac{\pi}{12}$ Let $\{v_1, v_2, v_3, v_4\}$ be a basis of \mathbb{R}^4 and 33. $v = a_1 v_1 + a_2 v_2 + a_3 v_3$ where $a_i \in R$, (c.) $\frac{\pi}{12}$ i = 1, 2, 3, 4. Then $\{v_1 - v, v_2 - v, v_3 - v, v_4 - v\}$ is a basis of $(d.)\frac{\pi}{2}$ R⁴ if and only if In the Laurent series expansion of 39. (a.) $a_1 = a_2 = a_3 = a_4$ $f(z) = \frac{1}{z-1} - \frac{1}{z-2}$ valid in the region (b.) $a_1 a_2 a_3 a_4 = -1$ (c.) $a_1 + a_2 + a_3 + a_4 \neq 0$ |x| > 2, the coefficient of $\frac{1}{7^2}$ is (d.) $a_1 + a_2 + a_3 + a_4 \neq 0$ Let $R^{2\times 2}$ be the real vector space of all (a.) - 134. (b.)0 2×2 real matrices. For $Q = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$, (c.) 1 (d.)2 define a linear transformation T on $R^{2\times 2}$ as 40. Let w = f(z) be the bilinear T(P) = QP. Then the rank of T is transformation that maps -1, 0 and 1 to -i, (a.) 1 1 and I respectively. Then f(1-i) equals (b.)2 (a.) -1+2i(c.)3 (b.)2i (d.)4 (c.) -2+i35. Let P be a $n \times n$ matrix with integral (d.) -1+ientries and $Q = P + \frac{1}{2}I$, where I denotes 41. For the positively oriented unit circle, $\int_{|z|=1} \frac{2\operatorname{Re}(z)}{z+2} dz =$ the $n \times n$ identity matrix. Then Q is (a.) Idempotent, i.e $Q^2 = Q$ |x|=1(b.) Invertible (a.)0 (c.) Nilpotent (b.) *πi* (d.) Unipotent, i.e., Q - I is nilpotent (c.) 2πi 36. Let M be a square matrix of order, 2 such (d.) 4*πi* that rank of M is 1. Then M is The number 42. of counting zeroes, (a.) Diagonalizable and nonsingular multiplicities, of the polynomial (b.) Diagonalizable and nilpotent $z^5 + 3z^3 + z^2 + 1$ inside the circle |z| = 2 is (c.) Neither diagonalizable nor nilpotent (a.)0 (d.)Either diagonalizable or nilpotent but (b.)2 not both (c.)3 37. If M is a 7×5 matrix of rank 3 and N is a (d.)5 5×7 matrix of rank 5, then rank (MN) is (a.) 5 (b.)3

Mathematics

5 of 11

43. Let f = u + iv and g = v + iu be non-zero analytic functions on |z| < 1. Then it follows that (a.) $f' \equiv 0$ (b.) f is conformal on |z| < 1(c.) $f \equiv kg$ for some k (d.) f is one to one 44. If $f(x, y) = \begin{cases} x^3 / (x^2 + y^2), & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$ 48. then at (0,0)(a.) f_x, f_y do not exist (b.) f_x, f_y exist and are equal (c.) The directional derivative exists along any straight line (d.) f is differentiable Let $\sigma > 1$ and $g(x) = \sum_{n=1}^{\infty} \frac{1}{n^n}, \sigma \le x < \infty$. 45. Then g(x) is (a.) Not continuous (b.) Continuous but not differentiable (c.) Differentiable but not continuously differentiable (d.)Continuously differentiable The sequence of functions $\{f_n\}$ on [0,1]46. with Lebesgue measure, defined by $f_n(x) = \begin{cases} x, 0 \le x < 1 - 1/n \\ \sqrt{n}, 1 - 1/n \le x \le 1 \end{cases}$, converges 50. (a.) Almost everywhere and as well as in (b.) Almost everywhere but not in L^1 (c.) In L^1 , but not almost everywhere (d.)Neither almost everywhere nor in L^1 Consider two sequences $\{f_n\}$ and $\{g_n\}$ of 47. functions where $f_n:[0,1] \to R$ and $g_n: R \to R$ are defined by $f_n(x) = x^n$ and $g_n(x) = \begin{cases} \cos(x-n)\pi/2 & \text{If } x \in [n-1, n+1] \\ 0 & \text{otherwise} \end{cases}$ Then

(a.) Neither
$$\{f_n\}$$
 nor $\{g_n\}$ is uniformly
convergent
(b.) $\{f_n\}$ is not uniformly convergent but
 $\{g_n\}$ is
(c.) $\{g_n\}$ is not uniformly convergent but
 $\{f_n\}$
(d.) Both $\{f_n\}$ and $\{g_n\}$ are uniformly
convergent
Let $f:[0,1] \rightarrow R$ and $g:[0,1] \rightarrow R$ be
two functions defined by
 $f(x) = \begin{cases} \frac{1}{n} & \text{If } x = \frac{1}{n}, n \in N \\ 0 & \text{Otherwise} \end{cases}$ and
 $0 & \text{Otherwise} \end{cases}$
(a.) Both f and g are Riemann integrable
(b.) f is Riemann integrable but g is not
(c.) g is Riemann integrable but f is not
(d.) Neither f nor g is Riemann integrable
The set of all continuous function
 $f:[0,1] \rightarrow R$ satisfying
 $\int_0^1 t^n f(t) dt = 0, n = 0, 1, 2,$
(a.) Is empty
(b.) Contains a single element
(c.) Is count ably infinite
(d.) Is un count ably infinite
Let $f: R^3 \rightarrow R^3$ be defined by
 $f(x_1, x_2, x_3) = (x_2 + x_3, x_3 + x_1, x_1 + x_2)$.
Then the first derivative of f is
(a.) Not invertible anywhere
(b.) Invertible only at the origin

(c.) Invertible everywhere except at the origin

(d.) Invertible everywhere

51. Let
$$y = \varphi(x)$$
 and $y = \psi(x)$ be solutions
of $y'' - 2xy' + (\sin x^2)y = 0$ such that
 $\varphi(0) = 1$, $\varphi'(0) = 1$ and $\psi(0) = 1$,

 $\psi'(0) = 2$. Then the value of the Wronskian $W(\varphi, \psi)$ at x = 1 is (a.)0 (b.)1 (c.)e (d.) e^2 52. The set of all eigen values of the Sturm-Liouville problem $y'' + \lambda y = 0$, y'(0) = 0, $y'(\frac{\pi}{2}) = 0$ is given by (a.) $\lambda = 2n, n = 1, 2, 3...$ (b.) $\lambda = 2n, n = 0, 1, 2, 3...$ (c.) $\lambda = 4n^2$, n = 1, 2, 3, ...,(d.) $\lambda = 4n^2$, n = 0, 1, 2, 3, ...If Y(p) is the Laplace transform of y(t), 53. which is the solution of the initial value problem $\frac{d^2 y}{dt^2} + y(t) = \begin{cases} 0, & 0 < t < 2\pi \\ \sin t, & t > 2\pi \end{cases}$ with y(0) = 1 and y'(0) = 0, then Y(p)equals (a.) $\frac{p}{1+p^2} + \frac{e^{-2\pi p}}{\left(1+p^2\right)^2}$ (b.) $\frac{p+1}{1+p^2}$ (c.) $\frac{p}{1+p^2} + \frac{e^{-2\pi p}}{(1+p^2)}$ (d.) $\frac{p(1+p^2)+1}{(1+p^2)^2}$ If $y = \sum_{m=1}^{\infty} a_m x^m$ 54. is solution of y''+xy'+3y=0, then $\frac{a_m}{a_{m+2}}$ equals $(a.) \frac{(m+1)(m+2)}{m+3}$ (b.) $-\frac{(m+1)(m+2)}{m+3}$ $(c.) - \frac{m(m-1)}{m+3}$

$$(\mathbf{d}.)\,\frac{m\big(m-1\big)}{m+3}$$

55. The identical equation for:

$$x(1+x^2)y''+(\cos x)y'+(1-3x+x^2)y=0$$

is
(a.) $r^2 - r = 0$
(b.) $r^2 + r = 0$
(c.) $r^2 = 0$
(d.) $r^2 - 1 = 0$

The general solution $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ of the system 56.

$$x = -x + 2y$$

$$y = 4x + y$$

is given by
(a.) $\begin{pmatrix} c_1 e^{3t} - c_2 e^{-3t} \\ 2c_1 e^{3t} + c_2 e^{-3t} \end{pmatrix}$
(b.) $\begin{pmatrix} c_1 e^{3t} \\ c_2 e^{-3t} \end{pmatrix}$
(c.) $\begin{pmatrix} c_1 e^{3t} + c_2 e^{-3t} \\ 2c_1 e^{3t} + c_2 e^{-3t} \\ 2c_1 e^{3t} + c_2 e^{-3t} \end{pmatrix}$
(d.) $\begin{pmatrix} c_1 e^{3t} - c_2 e^{-3t} \\ -2c e^{3t} + c e^{-3t} \end{pmatrix}$

57.

Let G and H be two groups. The groups G×H and H×G are isomorphic

- (a.) For any G and any H
- (b.) Only if one of them is cyclic
- (c.) Only if one of them is abelian

(d.) Only if G and H are isomorphic

- 58. Let $H = Z_2 \times Z_6$ and $K = Z_2 \times Z_4$. Then
 - (a.) H is isomorphic to K since both are cyclic
 - (b.)H is not isomorphic to K since 2 divides 6 and g.c.d. (3,4) = 1
 - (c.) H is not isomorphic to K since K is cyclic whereas H is no
 - (d.) H is not isomorphic to K since there is no homomorphism from H to K

59. Suppose G denote the multiplicative group $\{-1,1\}$ and $S = \{z \in C : |z| = 1\}$. Let G act on S by complex multiplication. Then the cardinality of the orbit of i is (a.) 1

GATE - 2004				www.dipsacademy.com
	(b.)2			(b.)T is one to one but not bounded
	(c.)5			(c.) T is bounded and its inverse (from
60.	(d.)Infinite			range of T) exists but is not bounded
	The number of 5–Sylow subgroups of Z_{20}			(d.)T is bounded and its inverse (from
	is			range of T(exists and is bounded
	(a.) 1		65.	Let X be the space of real sequences
	(b.)4			having finitely many non-zero terms such
	(c.)5			$\ \cdot\ _p \le p \le \infty$. Then
	(d.)6			(a.) f is continuous only for $p = 1$
61	Let $S = \int a$	b $a b c \in \mathbb{R}$ be the ring	C	(b.) f is continuous only for $p = 2$
01.	Let $S = \left\{ \left(0 \right) \right\}$	c). $a, b, c, \in \mathbb{R}$ be the ring		(c.) f is continuous only for $p = \infty$
	under matrix a	ddition and multiplication.		(d.) f is not continuous for any
	Then the subse	$f \left\{ \begin{pmatrix} 0 & p \\ \vdots & p \end{pmatrix} : p \in R \right\}$ is		$p, 1 \le p \le \infty$
	Then the subse	$\left[\begin{pmatrix} 0 & 0 \end{pmatrix}^{p \in \mathbf{R}} \right]^{n}$	66.	Let $X = C^{1}[0,1]$ with the norm
	(a.) Not an idea	al of S		$ x = x _{\infty} + x' _{\infty}$ (where x' is the
	(b.) An ideal bu	at not a prime ideal of S	C	derivative of x) and $Y = C^{1}[0,1]$ with sup
	(c.) Is a prime	e ideal but not a maximal		norm. if T is the identity operator from X
62.	(d) Is a maximal ideal of S			into Y, then
		Consider $S = C[x^5]$, complex		(a.) T and T^{-1} are continuous
	Consider			(b.) T is continuous but T^{-1} is not
	polynomials	is x^5 , as a subset of		(c.) T^{-1} is continuous but T is not
	T = C[x], th	e ring of all complex		(d.) Neither T nor T^{-1} is continuous
	polynomials. T	Then	67.	Let $X = C[-1,1]$ with the inner product
	(a.) S is neither	an ideal nor a sub ring of T		defined by
	(b.)S is an idea	al, but not a sub ring of T		$\begin{pmatrix} & & \\ & & \end{pmatrix} = \begin{pmatrix} 1 & \\ & & \end{pmatrix} $
	(c.) S is a sub r.	ing but not an ideal of T		$\langle x, y \rangle = \int_{-1}^{1} x(t) y(t) dt$
\mathcal{C}^{2}	(d.)S is both a	sub ring and an ideal of 1		Let Y be the set of all odd functions in X.
03.	which of the $s = 7 [r]$	1010wing statements is true		Then
	about $S = Z[x]$			(a.) $Y \perp$ is the set of all even functions in \mathbf{x}
	(a.) S is an Eu ideals are r	clidean domain since all its		(b.) $Y \perp$ is the set of odd functions in X
	(b.)S is an Euc	clidean domain since Z is an		(c.) $Y \perp = (0)$
	Euclidean o	domain		(d) $\mathbf{V} \perp$ is the set of all constant functions
	(c.) S is not an	Euclidean domain since S is		in X
	(d) S is not an	Fuelideen demain since it	68.	Let $X = l^2$, the space of all square-
	has non-pri	incipal ideals		summable sequences with
64.	Let X be th	e space of bounded real		$\ \mathbf{r}\ = \sqrt{\sum_{k=1}^{\infty} \mathbf{r} ^2}$ for $\mathbf{r} = (\mathbf{r}) \in \mathbf{X}$
	sequences with	n sup norm. Define a linear		$\ x\ = \sqrt{\sum_{i=1}^{n} x_i }, \text{ for } x = (x_i) \in X.$
	operator $T: X$	$\rightarrow X$ by		Define a sequence $\{T_n\}$ of linear operators
	$T(x) = \left(\frac{x_1}{1}, \frac{x_2}{2}\right)$	-, for		on X by $T_n(x) = (x_1, x_2,, x_n, 0, 0,).$
	r = r(r - r)) $\subset X$ Then		Then
	$n = n (n_1, n_2, \dots$	$y \in A$, from $y \in A$, $y \in A$		(a.) T_n is an un bounded operator for

(a.) T is bounded but not one to one

Mathematics

8 of 11

sufficiently large n

(b.) T_n is bounded but not compact for all n (c.) T_n is compact for all n but $\lim T_n$ is not compact (d.) T_n is compact for all n and so is $\lim T_n$ 69. To find the positive square root of a > 0by solving $x^2 - a = 0$ by the Newton-Raphson method, if x_n denotes the nth iterate with $x_0 > 0$, $x_0 \neq \sqrt{a}$, then the sequence $\{x_n, n \ge 1\}$ is (a.) Strictly decreasing (b.) Strictly increasing (c.) Constant (d.)Not convergent 70. In solving the ordinary differential equation y' = 2x, y(0) = 0 using Euler's method, the iterates $y_n, n \in N$ satisfy (a.) $y_n = x_n^2$ (b.) $y_n = 2x_n$ (c.) $y_n = x_n x_{n-1}$ (d.) $y_n = x_{n-1} + x_n$ The characteristic curves of the partial 71. differential equation $(2x+u)u_{x} + (2y+u)u_{y} = u,$ Passing through (1,1) for any arbitrary initial values prescribed on a noncharacteristic curve are given by $(a.) \mathbf{x} = \mathbf{y}$ (b.) $x^2 + y^2 = 2$ (c.) x + y = 2(d.) $x^2 - xy + y^2 = 1$ 72. The solution of Laplace's equation $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$ In the unit disk with boundary conditions $u(1,\theta) = 2\cos^2\theta$ is given by (a.) $1 + r^2 \cos \theta$ (b.) $1 + \ln r + r \cos 2\theta$ (c.) $2r^3 \cos^2 \theta$ (d.) $1 - r^2 + 2r^2 \cos^2 \theta$ For the heat equation 73.

www.dipsacademy.com $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ on $R \times [0,T],$ with $u(x,0) = u_0(x), u_0 \in L^2(R)$ (a.) The solution is reversible in time (b.) If $u_0(x)$ have compact support, so does u(x,t) for any given t (c.) If $u_0(x)$ is discontinuous at a point, so is u(x,t) for any given t (d.) If $u_0(x) \ge 0$ for all x, then $u(x,t) \ge 0$ for all x and t > 0If u(x,t) satisfies the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, x \in R, t > 0,$ with initial conditions $u(x,0) = \begin{cases} \sin \frac{\pi x}{c}, & 0 \le x \le c \end{cases}$ and Elsewhere $u_t(x,0) = 0$ for all x, then for a given t > (a.) There are values of x at which u(x,t)is discontinuous (b.) u(x,t) is continuous but $u_x(x,t)$ is not continuous (c.) $n(x,t), u_x(x,t)$ are continuous, but $u_{xx}(x,t)$ is not continuous (d.) u(x,t) is smooth for all x A rigid body is acted on by two forces, $F_1 = a\hat{i} + b\hat{j} - 3\hat{k}$ at the point (1,2,-1) and $F_2 = \hat{i} + a\hat{j} + b\hat{k}$ at the point (-1,0,1). If the force system is equipollent to the force F and the couple G, which have no components along \hat{k} , then F equals (a.) $2\hat{i} + 4\hat{j}$ (b.) $2\hat{i} - 4\hat{j}$ (c.) $4\hat{i} + 2\hat{j}$

(d.) $4\hat{i} - 2\hat{i}$

74.

75.

76. A frictionless wire, fixed at R, rotates with constant angular velocity ω about a vertical axis RO (O is the origin and R is above O), marking a constant angle α with

it. A particle P of unit mass is constrained to move on the wire. If the mass of the wire is negligible, distance OR is h and RP is r(t) at any time t, then the Lagrangian of the motion is

(a.)
$$\frac{1}{2}r^{2} - g(h - r\cos\alpha)$$

(b.)
$$\frac{1}{2}(r^{2} + \omega^{2}r^{2}) + gr\cos\alpha$$

(c.)
$$\frac{1}{2}(r^{2} + \omega^{2}r^{2}\sin^{2}\alpha) - g(h - r\cos\alpha)$$

(d.)
$$\frac{1}{2}(r^{2} + r^{2}\sin\alpha) - gh$$

)

- In R with the usual topology, the set 77. $U = \{x \in R : -1 \le x \le 1, x \ne 0\}$ is
 - (a.) Neither Hausdorff nor first countable
 - (b.) Hausdorff but not first countable
 - (c.) First countable but not Hausdorff
 - (d.)Both Hausdorff and first countable
- 78. $U = \{x \in Q : 0 \le x \le 1\}$ and Suppose
 - $V = \{x \in Q : 0 < x < 2\}$. Let n and m be the number of connected components of U and V respectively. Then
 - (a.) m = n = 1
 - (b.) $m = n \neq 1$
 - (c.) m = 2n, m, n finite

(d.)
$$m > 2$$

- 79. Let $f:[0,1] \rightarrow R$ be the continuous function defined by
 - $f(x) = \frac{(x-1)(x-2)}{(x-3)(x-4)}.$

Then the maximal subset of R on which f has a continuous extension is

(a.) $(-\infty, 3)$

 $(b.)(-\infty,3)\cup(4,\infty)$

(c.) $R \setminus (3,4)$

 $U = (0, 1/2), V = (-1/2, 0) \times (-1/2, 0)$ and D be the open unit disk with centre at origin of \mathbb{R}^2 . Let f be a real valued continuous function on D such that f(U) = 0. Then it follows that

www.dipsacademy.com

- (a.) f(v) = 0 for every v in V
- (b.) $f(v) \neq 0$ for every v in V
- (c.) f(v) = 0 for some v in V
- (d.) f can assume any real value on V
- Suppose X is a random variable and f, g: 81. $R \rightarrow R$ are measurable functions such that f(X) and g(X) are independent, then
 - (a.) X is degenerate

S

83.

- (b.)Both f(X) and g(X) is degenerate
- (c.) Either f(X) or g(X) is degenerate
- (d.)X, f(X) and g(X) could all be nondegenerate
- 82. Suppose X_1, X_2, \dots, X_n is a random sample from a $N(\mu, \sigma^2)$ distribution, where μ is

known, but
$$\sigma^2$$
 is not. If $\overline{X} = \frac{1}{n} \sum_{i=0}^{n} X_i$ and

$$S = \sqrt{\frac{1}{n} \sum_{i=0}^{n} (X_i - \mu)^2}$$
, then the pair (\overline{X}, S) is

(a.) Complete and sufficient (b.)Complete but not sufficient (c.) Sufficient but not complete (d.)Neither sufficient nor complete If X and Y are random variable with $0 < \operatorname{var}(X), \operatorname{var}(Y) < \infty$, consider the

 $(I) \operatorname{var}(E(Y / X)) = \operatorname{var}(Y)$ statements: and (II) the correlation co-efficient between X and Y is ± 1 . Then

- (a.) (I) implies (II) and (II) implies (I)
- (b.)(I) implies (II) but (II) does not imply (I)
- (c.) (II) implies (I) but (I) does not imply (II)
- (d.)Neither does (I) imply (II) nor does (II) imply (I)
- 84. If the random variable X has a Poisson distribution with parameter λ and the parametric space has three elements 3,4 and k, then to test the null hypothesis $s H_0 = \lambda = 3vs$. the alternative hypothesis $H_1: \lambda \neq 3$, a uniformly most powerful test

at any level $\alpha \in (0,1)$ exist for any sample size

(a.) For all $k \neq 3, 4$

- (b.) If and only if k > 4
- (c.) If and only if k < 3
- (d.) If and only if k > 3
- 85. Suppose the random variable X has a uniform distribution P_0 in the interval $[\theta 1, \theta + 1]$, where $\theta \in Z$. If a random sample of size n is drawn from this distribution, then P_0 almost surely for all $\theta \in Z$, a maximum likelihood estimator (MLE) for θ
 - (a.) Exists and is unique
 - (b.)Exists but may or not be unique
 - (c.) Exists but cannot be unique
 - (d.)Does not exist
- 86. A χ^2 (chi-squared) test for independence between two attributes X and Y is carried out at 2.5% level of significance on the following 2×2 contingency table showing frequencies

If the upper 2.5% point of the χ_1^2 distribution is given as 5.0, then the hypothesis of independence is to be rejected if and only if

- (a.) d > 1
- (b.)d > 3(c.)d > 5
- (d.)d > 9
- 87. Consider the Linear Programming Problem (LPP):

to:

Maximize x_1 ,

Subject /

 $3x_1 + 4x_2 \le 10$,

 $5x_1 - x_2 \le 9, \ 3x_1 - 2x_2 \ge -2,$

$$x_1 - 3x_2 \le 3, x_1, x_2 \ge 0$$
.

The value of the LPP is

(a.) $\frac{9}{5}$ (b.)2

Mathematics

(d.) $\frac{10}{3}$ Given that the eigen values of the integral

$$y(x) = l \int_{0}^{2\pi} \cos(x+t) y(t) dt$$
 are $\frac{1}{\pi}$ and

 $-\frac{1}{\pi}$ with respective eigen functions $\cos x$

and $\sin x$. Then the integral equation

$$y(x) = \sin x + \cos x + \lambda \int_0^{2\pi} \cos(x+t) y(t) dt$$

has

(c.)3

equation

88.

(a.) Unique solution for $\lambda = 1/\pi$

(b.) Unique solution for $\lambda = -1/\pi$

(c.) Unique solution for $\lambda = \pi$

(d.)No solution for $\lambda = -\pi$

89. The values of λ for which the integral equation

$$v(x) = \lambda \int_0^1 (6x - t) y(t) dt$$

Has a non trivial solution, are given by the roots of the equation

(a.)
$$(3\lambda - 1)(2 + \lambda) - \lambda^2 = 0$$

(b.) $(3\lambda - 1)(2 + \lambda) + 2 = 0$
(c.) $(3\lambda - 1)(2 + \lambda) - 4\lambda^2 = 0$
(d.) $(3\lambda - 1)(2 + \lambda) + \lambda^3 = 0$

90. The extremals for the functional

$$v\left[y(x)\right] = \int_{x_0}^{x_1} (xy' + y'2) dx$$

Are given by the following family of curves:

(a.)
$$y = c_1 + c_2 x + \left(\frac{x^2}{4}\right)$$

(b.) $y = 1 + c_1 x + c_2 \left(\frac{x^2}{4}\right)$
(c.) $y = c_1 + x + c_2 \left(\frac{x^4}{4}\right)$
(d.) $y = c_1 + c_1 x - \left(\frac{x^2}{4}\right)$