MATHEMATICS

ONE MARKS QUESTIONS (1-20)

1. The dimension of the vector space $V=\left\{A=\left(a_{i j}\right)_{n \times n} ; a_{i j} \in C, a_{i j}=-a_{j i}\right\} \quad$ over field R is
(a.) n^{2}
(b.) $n^{2}-1$
(c.) $n^{2}-n$
(d.) $\frac{n^{2}}{2}$
2. The minimal polynomial associated with the matrix $\left[\begin{array}{lll}0 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1\end{array}\right]$ is
(a.) $x^{3}-x^{2}-2 x-3$
(b.) $x^{3}-x^{2}+2 x-3$
(c.) $x^{3}-x^{2}-3 x-3$
(d.) $x^{3}-x^{2}+3 x-3$
3. For the function $f(z)=\sin \left(\frac{1}{\cos (1 / z)}\right)$,
the point $\mathrm{z}=0$ is
(a.) a removable singularity
(b.) a pole
(c.) an essential singularity
(d.)a non-isolated singularity
4. Let $f(z)=\sum_{n=0}^{15} z^{n}$ for $z \in C$. If $C:|z-i|=2$ then $\oint_{C} \frac{f(z) d z}{(z-i)^{15}}=$
(a.) $2 \pi i(1+15 i)$
(b.) $2 \pi i(1-15 i)$
(c.) $4 \pi i(1+15 i)$
(d.) $2 \pi i$
5. For what values of α and β, the quadrature formula $\int_{-1}^{1} f(x) d x \approx \alpha f(-1)+f(\beta)$ is exact for all polynomials of degree ≤ 1 ?
(a.) $\alpha=1, \beta=1$
(b.) $\alpha=-1, \beta=1$
(c.) $\alpha=1, \beta=-1$
(d.) $\alpha=-1, \beta=-1$
6. Let $f:[0,4] \rightarrow R$ be a three times continuously differentiable function. Then the value of $f[1,2,3,4]$ is
(a.) $\frac{f^{\prime \prime}(\xi)}{3}$ for some $\xi \in(0,4)$
(b.) $\frac{f "(\xi)}{6}$ for some $\xi \in(0,4)$
(c.) $\frac{f^{\prime \prime \prime}(\xi)}{3}$ for some $\xi \in(0,4)$
(d.) $\frac{f \text { "" }(\xi)}{6}$ for some $\xi \in(0,4)$
7. Which one of the following is TRUE?
(a.) Every linear programming problem has a feasible solution.
(b.)If a linear programming problem has an optimal solution then it is unique.
(c.) The union of two convex sets is necessarily convex.
(d.) Extreme points of the disk $x^{2}+y^{2} \leq 1$ are the point on the circle $x^{2}+y^{2}=1$.
8. The dual of the linear programming problem:
Minimize $c^{T} x$ subject to $A x \geq b$ and $x \geq 0$ is
(a.) Maximize $b^{T} w$ subject to $A^{T} w \geq c$ and $w \geq 0$
(b.) Maximize $b^{T} w$ subject to $A^{T} w \leq c$ and $w \geq 0$
(c.) Maximize $b^{T} w$ subject to $A^{T} w \leq c$ and w is unrestricted
(d.) Maximize $b^{T} w$ subject to $A^{T} w \geq c$ and w is unrestricted
9. The resolvent kernel for the integral equation $u(x)=F(x)+\int_{\log 2}^{x} f^{(t-x)} u(t) d t$ is
(a.) $\cos (x-t)$
(b.) 1
(c.) e^{t-x}
(d.) $e^{2(t-x)}$
10. Consider the metrics $d_{2}(f, g)=\left(\int_{a}^{b}|f(t)-g(t)|^{2} d t\right)^{1 / 2} \quad$ and $d_{\infty}(f, g)=\sup _{t \in[a, b]}|f(t)-g(t)|$ on the space $X=C[a, b]$ of all real valued continuous functions on $[a, b]$. Then which of the following is TRUE?
(a.) Both $\left(X, d_{2}\right)$ and $\left(X, d_{\infty}\right)$ are complete.
(b.) $\left(X, d_{2}\right)$ is complete but $\left(X, d_{\infty}\right)$ is NOT complete.
(c.) $\left(X, d_{\infty}\right)$ is complete but $\left(X, d_{2}\right)$ is NOT complete.
(d.)Both $\left(X, d_{2}\right)$ and $\left(X, d_{\infty}\right)$ are NOT complete.
11. A function $f: R \rightarrow R$ need NOT be Lebesgue measurable if
(a.) f is monotone
(b.) $\{x \in R: f(x) \geq \alpha\}$ is measurable for each $\alpha \in R$
(c.) $\{x \in R: f(x)=\alpha\}$ is measurable for each $\alpha \in R$
(d.) For each open set G in $R, f^{-1}(G)$ is measurable
12. Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space H and let $x(\neq 0) \in H$. Then
(a.) $\lim _{n \rightarrow \infty}\left\langle x, e_{n}\right\rangle$ does not exist
(b.) $\lim _{n \rightarrow \infty}\left\langle x, e_{n}\right\rangle=\|x\|$
(c.) $\lim _{n \rightarrow \infty}\left\langle x, e_{n}\right\rangle=1$
(d.) $\lim _{n \rightarrow \infty}\left\langle x, e_{n}\right\rangle=0$
13. The subspace $Q \times[0,1]$ of R^{2} (with the usual topology) is
(a.) dense is R^{2}
(b.) connected
(c.) separable
(d.) compact
14. $Z_{2}[x] /\left\langle x^{3}+x^{2}+1\right\rangle$ is
(a.)a field having 8 elements
(b.)a field having 9 elements
(c.) an infinite field
(d.)NOT a field
15. The number of element of a principal ideal domain can be
(a.) 15
(b.) 25
(c.) 35
(d.) 36
16. Let, F, G and H be pair wise independent events such that $P(F)=P(G)=P(H)=\frac{1}{3}$ and $(F \cap G \cap H)=\frac{1}{4}$. Then the probability that at least one event among F, G and H occurs is
(a.) $\frac{11}{12}$
(b.) $\frac{7}{12}$
(c.) $\frac{5}{12}$
(d.) $\frac{3}{4}$
17. Let X be a random variable such that $E\left(X^{2}\right)=E(X)=1$. Then $E\left(X^{100}\right)=$
(a.) 0
(b.) 1
(c.) 2^{100}
(d.) $2^{100}+1$
18. For which of the following distributions, the weak law of large numbers does NOT hold?
(a.) Normal
(b.) Gamma
(c.) Beta
(d.) Cauchy
19. If $D \equiv \frac{d}{d x}$ then the value of $\frac{1}{(x D+1)}\left(x^{-1}\right)$ is
(a.) $\log x$
(b.) $\frac{\log x}{x}$
(c.) $\frac{\log x}{x^{2}}$
(d.) $\frac{\log x}{x^{3}}$
20. The equation
$\left(\alpha x y^{3}+y \cos x\right) d x+\left(x^{2} y^{2}+\beta \sin x\right) d y=0$
is exact for
(a.) $\alpha=\frac{3}{2}, \beta=1$
(b.) $\alpha=1, \beta=\frac{3}{2}$
(c.) $\alpha=\frac{2}{3}, \beta=1$
(d.) $\alpha=1, \beta=\frac{2}{3}$

TWO MARKS QUESTIONS (21-60)

21. If $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ i & \frac{-1+i \sqrt{3}}{2} & 0 \\ 0 & 1+2 i & \frac{-1-i \sqrt{3}}{2}\end{array}\right)$, then the
trace of A^{102} is
(a.) 0
(b.) 1
(c.) 2
(d.) 3
22. Which of the following matrices is NOT diagonalizable?
(a.) $\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$
(b.) $\left(\begin{array}{ll}1 & 0 \\ 3 & 2\end{array}\right)$
(c.) $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
(d.) $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
23. Let V be the column space of the matrix $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right)$. Then the orthogonal projection of $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ on V is
(a.) $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
(b.) $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
(c.) $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
(d.) $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
24. Let $\sum_{n=-\infty}^{\infty} a_{n}(z+1)^{n}$ be the Laurent series expansion of $f(z)=\sin \left(\frac{z}{z+1}\right)$. Then $a_{-2}=$
(a.) 1
(b.) 0
(c.) $\cos (1)$
(d.) $\frac{-1}{2} \sin (1)$
25. Let $u(x, y)$ be the real part of an entire function $f(z)=u(x, y)+i v(x, y)$ for $z=x+i y \in C$. If C is the positively oriented boundary of a rectangular region R in R^{2}, then $\oint_{c}\left[\frac{\partial u}{\partial y} d x-\frac{\partial u}{\partial x} d y\right]=$
(a.) 1
(b.) 0
(c.) 2π
(d.) π
26. Let $\phi:[0,1] \rightarrow R \quad$ be three times continuously differentiable, Suppose that the iterates defined by $x_{n+1}=\phi\left(x_{n}\right), n \geq 0$ converge to the fixed point ξ of ϕ. If the order of convergence is three then
(a.) $\phi^{\prime}(\xi)=0, \phi^{\prime \prime}(\xi)=0$
(b.) $\phi^{\prime}(\xi) \neq 0, \phi^{\prime \prime}(\xi)=0$
(c.) $\phi^{\prime}(\xi)=0, \phi^{\prime \prime}(\xi) \neq 0$
(d.) $\phi^{\prime}(\xi) \neq 0, \phi^{\prime \prime}(\xi) \neq 0$
27. Let $f:[0,2] \rightarrow R$ be a twice continuously differentiable function. If $\int_{0}^{2} f(x) d x \approx 2 f(1)$, then the error in the approximation is
(a.) $\frac{f^{\prime}(\xi)}{12}$ for some $\xi \in(0,2)$
(b.) $\frac{f^{\prime}(\xi)}{2}$ for some $\xi \in(0,2)$
(c.) $\frac{f "(\xi)}{3}$ for some $\xi \in(0,2)$
(d.) $\frac{f "(\xi)}{6}$ for some $\xi \in(0,2)$
28. For a fixed $t \in R$, consider the linear programming problem:
Maximize $z=3 x+4 y$
Subject to $x+y \leq 100$

$$
x+3 y \leq t
$$

and $\quad x \geq 0, y \geq 0$
The maximum value of z is 400 for $\mathrm{t}=$
(a.) 50
(b.) 100
(c.) 200
(d.) 300
29. The minimum value of
$z=2 x_{1}-x_{2}+x_{3}-5 x_{4}+22 x_{5}$ subject to
$x_{1}-2 x_{4}+x_{5}=6$
$x_{2}+x_{4}-4 x_{5}=3$
$x_{3}+3 x_{4}+2 x_{5}=10$
$x_{j} \geq 0, j=1,2, \ldots, 5$
is
(a.) 28
(b.) 19
(c.) 10
(d.) 9
30. Using the Hungarian method, the optimal value of the assignment problem whose cost matrix is given by

5	23	14	8
10	25	1	23
35	16	15	12
16	23	11	7

is
(a.) 29
(b.) 52
(c.) 26
(d.) 44
31. Which of the following sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of functions does NOT converge uniformly on $[0,1]$?
(a.) $f_{n}(x)=\frac{e^{-x}}{n}$
(b.) $f_{n}(x)=(1-x)^{n}$
(c.) $f_{n}(x)=\frac{x^{2}+n x}{n}$
(d.) $f_{n}(x)=\frac{\sin (n x+n)}{n}$
32. Let $E=\left\{(x, y) \in R^{2}: 0<x<y\right\}$.Then
$\iint_{E} y e^{-(x+y)} d x d y=$
(a.) $\frac{1}{4}$
(b.) $\frac{3}{2}$
(c.) $\frac{4}{3}$
(d.) $\frac{3}{4}$
33. Let $f_{n}(x)=\frac{1}{n} \sum_{k=0}^{n} \sqrt{k(n-k)}\binom{n}{k} x^{k}(1-x)^{n-k}$ for $\quad x \in[0,1], n=1,2, \ldots$ If $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for $x \in[0,1]$, then the maximum value of $f(x)$ on $[0,1]$ is
(a.) 1
(b.) $\frac{1}{2}$
(c.) $\frac{1}{3}$
(d.) $\frac{1}{4}$
34. Let $f:\left(c_{00},\|\cdot\|_{1}\right) \rightarrow C$ be a non zero continuous linear functional. The number of Hahn-Banach extensions of f to $\left(l^{1},\|.\| \|_{1}\right)$ is
(a.) One
(b.)Two
(c.) Three
(d.)infinite
35. If $I:\left(l^{1},\| \| \|_{2}\right) \rightarrow\left(l^{1},\|\cdot\|_{1}\right)$ is the identity map, then
(a.) Both I and I^{-1} are continuous
(b.)I is continuous but I^{-1} is NOT continuous
(c.) I^{-1} is continuous but I is NOT continuous
(d.) Neither I and I^{-1} is continuous
36. Consider the topology $\tau=\{G \subseteq R: R \backslash G$ is compact in $\left.\left(R, \tau_{u}\right)\right\} \cup\{\phi, R\}$ on R, where τ_{u} is the usual topology on R and ϕ is the empty set. Then (R, τ) is
(a.) a connected Hausdorff space
(b.) connected but NOT Hausdorff
(c.) hausdorff but NOT connected
(d.)neither connected nor Hausdorff
37. Let
$\tau_{1}=\{G \subseteq R: G$ is finite or $R \backslash G$ is finite $\}$
and
$\tau_{2}=\{G \subseteq R: G$ is contable or $R \backslash G$ is contable\}
Then
(a.) neither τ_{1} nor τ_{2} is a topology on R
(b.) τ_{1} is a topology on R but τ_{2} is NOT a topology on R
(c.) τ_{2} is a topology on R but τ_{1} is NOT a topology on R
(d.) both τ_{1} and τ_{2} are topologies on R
38. Which one of the following ideals of the ring $Z[i]$ of Gaussian integers is NOT maximal?
(a.) $\langle 1+i\rangle$
(b.) $\langle 1-i\rangle$
(c.) $\langle 2+i\rangle$
(d.) $\langle 3+i\rangle$
39. If $\mathrm{Z}(\mathrm{G})$ denotes the centre of a group G, then the order of the quotient group $\mathrm{G} / \mathrm{Z}(\mathrm{G})$ cannot be
(a.) 4
(b.) 6
(c.) 15
(d.) 25
40. Let $\operatorname{Aut}(\mathrm{G})$ denote the group of automorphism of a group G. Which one of the following is NOT a cyclic group?
(a.) $\operatorname{Aut}\left(Z_{4}\right)$
(b.) $\operatorname{Aut}\left(Z_{6}\right)$
(c.) $\operatorname{Aut}\left(Z_{8}\right)$
(d.) $\operatorname{Aut}\left(Z_{10}\right)$
41. Let X be a non-negative integer valued random variable with $E\left(X^{2}\right)=3$ and $E(X)=1$. Then $\sum_{i=1}^{\infty} i P(X \geq i)=$
(a.) 1
(b.) 2
(c.) 3
(d.) 4
42. Let X be a random variable with probability density function $f \in\left\{f_{0}, f_{1}\right\}$, where
$f_{0}(x)=\left\{\begin{array}{ll}2 x, & \text { if } 0<x<1 \\ 0, & \text { otherwise }\end{array}\right.$ and
$f_{1}(x)=\left\{\begin{array}{cc}3 x^{2}, & \text { if } 0<x<1 \\ 0, & \text { otherwise }\end{array}\right.$
For testing the null hypothesis $H_{0}: f \equiv f_{0}$ against the alternative hypothesis $H_{1}: f \equiv f_{1}$ at level of significance $\alpha=$ 0.19 , the power of the most powerful test is
(a.) 0.729
(b.) 0.271
(c.) 0.615
(d.) 0.385
43. Let X and Y be independent and identically distributed $\mathrm{U}(0,1)$ random variables. Then $P\left(Y<\left(X-\frac{1}{2}\right)^{2}\right)=$
(a.) $\frac{1}{12}$
(b.) $\frac{1}{4}$
(c.) $\frac{1}{3}$
(d.) $\frac{2}{3}$
44. Let X and Y be Banach spaces and let $T: X \rightarrow Y$ be a linear map. Consider the statements:
P: If $x_{n} \rightarrow x$ in X then $T x_{n} \rightarrow T x$ in Y .

Q: If $x_{n} \rightarrow x$ in X and $T x_{n} \rightarrow y$ in Y then $T x=y$.
Then
(a.) P implies Q and Q implies P
(b.) P implies Q but Q does not imply P
(c.) Q implies P but P does not imply Q
(d.) Neither P implies Q nor Q implies P
45. If $y(x)=x$ is a solution of the differential equation
$y^{\prime \prime}-\left(\frac{2}{x^{2}}+\frac{1}{x}\right)\left(x y^{\prime}-y\right)=0,0<x<\infty$, then its general solution is
(a.) $\left(\alpha+\beta e^{-2 x}\right) x$
(b.) $\left(\alpha+\beta e^{2 x}\right) x$
(c.) $\alpha x+\beta e^{x}$
(d.) $\left(\alpha e^{x}+\beta\right) x$
46. Let $P_{n}(x)$ be the Legendra polynomial of degree n such that $P_{n}(1)=1, n=1,2, \ldots$. If $\int_{-1}^{1}\left(\sum_{j=1}^{n} \sqrt{j(2 j+1)} P_{j}(x)\right)^{2} d x=20$, then $\mathrm{n}=$
(a.) 2
(b.) 3
(c.) 4
(d.) 5
47. The integral surface satisfying the equation $y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=x^{2}+y^{2}$ and passing through the curve $x=1-1, y=1+t, z=1+t^{2}$ is
(a.) $z=x y+\frac{1}{2}\left(x^{2}-y^{2}\right)^{2}$
(b.) $z=x y+\frac{1}{4}\left(x^{2}-y^{2}\right)^{2}$
(c.) $z=x y+\frac{1}{8}\left(x^{2}-y^{2}\right)^{2}$
(d.) $z=x y+\frac{1}{16}\left(x^{2}-y^{2}\right)^{2}$
48. For the diffusion problem $u_{x x}=u_{t}(0<x<\pi, t>0), \quad u(0, t)=0$, $u(\pi, t)=0$ and $u(x, 0)=3 \sin 2 x$, the solution is given by
(a.) $3 e^{-t} \sin 2 x$
(b.) $3 e^{-4 t} \sin 2 x$
(c.) $3 e^{-9 t} \sin 2 x$
(d.) $3 e^{-2 t} \sin 2 x$
49. A simple pendulum, consisting of a bob of mass m connected with a string of length a, is oscillating in a vertical plane. If the string is making an angle θ with the vertical, then the expression for the Lagrangian is given as
(a.) $m a^{2}\left(\theta^{2}-\frac{2 g}{a} \sin ^{2}\left(\frac{\theta}{2}\right)\right)$
(b.) $2 m g a \sin ^{2}\left(\frac{\theta}{2}\right)$
(c.) $m a^{2}\left(\frac{\theta^{2}}{2}-\frac{2 g}{a} \sin ^{2}\left(\frac{\theta}{2}\right)\right)$
(d.) $\frac{m a}{2}\left(\theta^{2}-\frac{2 g}{a} \cos \theta\right)$
50. The extremal of the functional
$\int_{0}^{1}\left(y+x^{2}+\frac{y^{\prime 2}}{4}\right) d x, y(0)=0, y(1)=0$ is
(a.) $4\left(x^{2}-x\right)$
(b.) $3\left(x^{2}-x\right)$
(c.) $2\left(x^{2}-x\right)$
(d.) $x^{2}-x$

Common Data for Questions (51 \& 52)

Let $T: R^{3} \rightarrow R^{3}$ be the linear transformation defined by
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+3 x_{2}+2 x_{3}+3 x_{1}+4 x_{2}+x_{3}, 2 x_{1}+x_{2}-x_{3}\right)$
51. The dimension of the range space of T^{2} is
(a.) 0
(b.) 1
(c.) 2
(d.) 3
52. The dimension of the null space of T^{3} is
(a.) 0
(b.) 1
(c.) 2
(d.)3

Common Data for Questions (53 \& 54)

Let $y_{1}(x)=1+x$ and $y_{2}(x)=e^{x}$ be two solutions of $y^{\prime \prime}(x)+P(x) y^{\prime}(x)+Q(x) y(x)=0$.
53. $P(x)=$
(a.) $1+x$
(b.) $-1-x$
(c.) $\frac{1+x}{x}$
(d.) $\frac{-1-x}{x}$
54. The set of initial conditions for which the above differential equation has NO solution is
(a.) $y(0)=2, y^{\prime}(0)=1$
(b.) $y(1)=0, y^{\prime}(1)=1$
(c.) $y(1)=1, y^{\prime}(1)=0$
(d.) $y(2)=1, y^{\prime}(2)=2$

Common Data for Questions (55 \& 56)

Let X and Y be random variables having the joing probability density function
$f(x, y)=\left\{\begin{array}{cc}\frac{1}{\sqrt{2 \pi y}} e^{\frac{-1}{2 y}(x-y)^{2}}, & \text { if }-\infty<x<\infty, 0<y<1 \\ 0, & \text { otherwise }\end{array}\right.$
55. The variance of the random variable X is
(a.) $\frac{1}{12}$
(b.) $\frac{1}{4}$
(c.) $\frac{7}{12}$
(d.) $\frac{5}{12}$
56. The covariance between the random variables X and Y is
(a.) $\frac{1}{3}$
(b.) $\frac{1}{4}$
(c.) $\frac{1}{6}$
(d.) $\frac{1}{12}$

Statement for Linked Answer Question (57 and 58)

Consider the function $f(z)=\frac{e^{i z}}{z\left(z^{2}+1\right)}$.
57. The residue of f at the isolated singular point in the upper half plane $\{z=x+i y \in C: y>0\}$ is
(a.) $\frac{-1}{2 e}$
(b.) $\frac{-1}{e}$
(c.) $\frac{e}{2}$
(d.) 2
58. The Cauchy Principal Value of the integral $\int_{-\infty}^{\infty} \frac{\sin x d x}{x\left(x^{2}+1\right)}$ is
(a.) $-2 \pi\left(1+2 e^{-1}\right)$
(b.) $\pi\left(1+e^{-1}\right)$
(c.) $2 \pi(1+e)$
(d.) $-\pi\left(1+e^{-1}\right)$

Statement for Linked Answer
 Question (59 and 60)

Let $\quad f(x, y)=k x y-x^{3} y-x y^{3} \quad$ for $(x, y) \in R^{2}$, where k is a real constant. The directional derivative of f at the point $(1,2)$ in the direction of the unit vector $u=\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ is $\frac{15}{\sqrt{2}}$.
59. The value of k is
(a.) 2
(b.) 4
(c.) 1
(d.) -2
60. The value of f at a local minimum in the rectangular region
$R=\left\{(x, y) \in R^{2}:|x|<\frac{3}{2},|y|<\frac{3}{2}\right\}$ is
(a.) -2
(b.) -3
(c.) $\frac{-7}{8}$
(d.) 0

