MATHEMATICS

6.

8.

9.

ONE MARKS QUESTIONS (1-20)

- 1. The dimension of the vector space $V = \left\{ A = \left(a_{ij} \right)_{n \times n}; a_{ij} \in C, a_{ij} = -a_{ji} \right\}$ over field R is (a.) n^2 (b.) $n^2 - 1$ (c.) $n^2 - n$ $(d.)\frac{n^2}{2}$ 2. The minimal polynomial associated with 0 0 3 the matrix 1 0 2 is 0 1 1 (a.) $x^3 - x^2 - 2x - 3$ (b.) $x^3 - x^2 + 2x - 3$ (c.) $x^3 - x^2 - 3x - 3$ (d.) $x^3 - x^2 + 3x - 3$ For the function $f(z) = \sin \left(\frac{1}{\cos(1/z)} \right)$ 3. the point z = 0 is (a.) a removable singularity (b.) a pole (c.) an essential singularity (d.) a non-isolated singularity Let $f(z) = \sum_{n=0}^{15} z^n$ for $z \in C$. If C: |z-i| = 24. then $\oint_C \frac{f(z)dz}{(z-i)^{15}} =$ (a.) $2\pi i (1+15i)$ (b.) $2\pi i (1-15i)$ (c.) $4\pi i (1+15i)$ (d.) 2*πi* 5. For what values of α and β , the quadrature formula $\int f(x) dx \approx \alpha f(-1) + f(\beta)$ is exact for all polynomials of degree ≤ 1 ? (a.) $\alpha = 1, \beta = 1$
- (b.) $\alpha = -1, \beta = 1$ (c.) $\alpha = 1, \beta = -1$ (d.) $\alpha = -1, \beta = -1$ Let $f:[0,4] \rightarrow R$ be a three times continuously differentiable function. Then the value of f[1,2,3,4] is (a.) $\frac{f''(\xi)}{3}$ for some $\xi \in (0,4)$

(b.)
$$\frac{f''(\xi)}{6}$$
 for some $\xi \in (0,4)$
(c.) $\frac{f'''(\xi)}{3}$ for some $\xi \in (0,4)$

(d.) $\frac{f(\xi)}{6}$ for some $\xi \in (0,4)$

Which one of the following is TRUE?

- (a.) Every linear programming problem has a feasible solution.
- (b.) If a linear programming problem has an optimal solution then it is unique.
- (c.) The union of two convex sets is necessarily convex.
- (d.)Extreme points of the disk $x^2 + y^2 \le 1$ are the point on the circle $x^2 + y^2 = 1$.
- The dual of the linear programming problem:

Minimize $c^T x$ subject to $Ax \ge b$ and $x \ge 0$ is

- (a.) Maximize $b^T w$ subject to $A^T w \ge c$ and $w \ge 0$
- (b.) Maximize $b^T w$ subject to $A^T w \le c$ and $w \ge 0$
- (c.) Maximize $b^T w$ subject to $A^T w \le c$ and w is unrestricted
- (d.) Maximize $b^T w$ subject to $A^T w \ge c$ and w is unrestricted

The resolvent kernel for the integral equation $u(x) = F(x) + \int_{\log 2}^{x} f^{(t-x)}u(t) dt$ is

(a.)
$$\cos(x-t)$$

(b.) 1
(c.) e^{t-x}

Mathematics

- (d.) $e^{2(t-x)}$ Consider 10. the metrics $d_{2}\left(f,g\right) = \left(\int_{a}^{b} \left|f\left(t\right) - g\left(t\right)\right|^{2} dt\right)^{1/2}$ and $d_{\infty}(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)|$ on the space X = C[a,b] of all real valued continuous functions on [a,b]. Then which of the following is TRUE? and (X, d_{∞}) (a.) Both (X, d_2) are complete. (b.) (X, d_2) is complete but (X, d_{∞}) is NOT complete. (c.) (X, d_{∞}) is complete but (X, d_{2}) is NOT complete. (d.)Both (X, d_2) and (X, d_{∞}) are NOT complete. 11. A function $f: R \to R$ need NOT be Lebesgue measurable if (a.)f is monotone (b.) $\{x \in R : f(x) \ge \alpha\}$ is measurable for each $\alpha \in R$ (c.) $\{x \in R : f(x) = \alpha\}$ is measurable for each $\alpha \in R$ (d.) For each open set G in $R, f^{-1}(G)$ is measurable Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal sequence in 12. a Hilbert space H and let $x \ne 0 \in H$. Then (a.) $\lim \langle x, e_n \rangle$ does not exist (b.) $\lim_{n \to \infty} \langle x, e_n \rangle = ||x||$ (c.) $\lim_{n \to \infty} \langle x, e_n \rangle = 1$ (d.) $\lim \langle x, e_n \rangle = 0$ The subspace $Q \times [0,1]$ of R^2 (with the 13. usual topology) is (a.) dense is R^2 (b.) connected (c.) separable (d.)compact $Z_{2}[x]/\langle x^{3}+x^{2}+1\rangle$ is 14. (a.) a field having 8 elements
 - (b.) a field having 9 elements
 - (c.) an infinite field

	The number of element of a principal ideal
	domain can be
	(a.) 15
	(b.)25
	(c.)35
	(d.)36
16.	Let, F, G and H be pair wise independent
	events such that $P(F) = P(G) = P(H) = \frac{1}{3}$
F	and $(F \cap G \cap H) = \frac{1}{4}$ Then the probability
	that at least one event among F, G and H
	occurs is
	. 11
6	$(a.) \frac{1}{12}$
	7
	$(b.)\frac{1}{12}$
CI	5
	(c.) $\frac{3}{12}$
	12
22	(a.) $\frac{11}{12}$ (b.) $\frac{7}{12}$ (c.) $\frac{5}{12}$ (d.) $\frac{3}{4}$
	Let X be a random variable such
	that $E(X^2) = E(X) = 1$. Then $E(X^{100}) =$
	(a.)0
	(b.)1
	(c.) 2^{100}
	(d.) $2^{100} + 1$
18.	For which of the following distributions,
	the weak law of large numbers does NOT
	hold?
	(a.) Normal
	(b.)Gamma
	(c.) Beta
	(d.)Cauchy
19.	(d.)Cauchy
19.	(d.)Cauchy If $D \equiv \frac{d}{dx}$ then the value of $\frac{1}{(xD+1)}(x^{-1})$
19.	(d.)Cauchy If $D \equiv \frac{d}{dx}$ then the value of $\frac{1}{(xD+1)}(x^{-1})$ is (a.) log x
19.	(d.)Cauchy If $D \equiv \frac{d}{dx}$ then the value of $\frac{1}{(xD+1)}(x^{-1})$ is (a.) log x
19.	(d.)Cauchy If $D \equiv \frac{d}{dx}$ then the value of $\frac{1}{(xD+1)}(x^{-1})$ is

20. The equation

(d.) $\frac{\log x}{3}$

www.dipsacademy.com

 $(\alpha xy^3 + y\cos x)dx + (x^2y^2 + \beta\sin x)dy = 0$ is exact for (a.) $\alpha = \frac{3}{2}, \beta = 1$ (b.) $\alpha = 1, \beta = \frac{3}{2}$ (c.) $\alpha = \frac{2}{3}, \beta = 1$ (d.) $\alpha = 1, \beta = \frac{2}{3}$

TWO MARKS QUESTIONS (21-60)

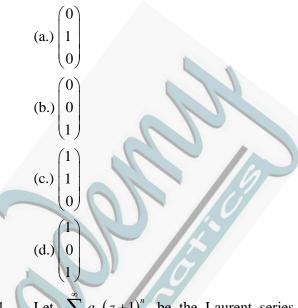
21. If
$$A = \begin{pmatrix} 1 & 0 & 0 \\ i & \frac{-1+i\sqrt{3}}{2} & 0 \\ 0 & 1+2i & \frac{-1-i\sqrt{3}}{2} \end{pmatrix}$$
, then the trace of A^{102} is

- (a.)0
- (b.)1
- (c.)2
- (d.)3
- 22. Which of the following matrices is NOT diagonalizable?
 - $(a.)\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ $(b.)\begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$

$$(c.) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

 $\begin{array}{c} (d.) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \\ Let \ V \ be \ the \ column \ space \ of \ the \\ matrix A = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \\ . \ Then \ the \ orthogonal \\ \end{array}$

projection of $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ on V is



24. Let $\sum_{n=-\infty}^{\infty} a_n (z+1)^n$ be the Laurent series

expansion of $f(z) = \sin\left(\frac{z}{z+1}\right)$. Then

(a.) 1
(b.)0
(c.)
$$\cos(1)$$

(d.) $\frac{-1}{2}\sin(1)$

 $a_{-2} =$

25.

Let u(x, y) be the real part of an entire function f(z) = u(x, y) + iv(x, y) for $z = x + iy \in C$. If C is the positively oriented boundary of a rectangular region R in R^2 , then $\oint_C \left[\frac{\partial u}{\partial y} dx - \frac{\partial u}{\partial x} dy \right] =$ (a.) 1 (b.) 0 (c.) 2π (d.) π

26. Let $\phi:[0,1] \to R$ be three times continuously differentiable, Suppose that the iterates defined by $x_{n+1} = \phi(x_n), n \ge 0$ converge to the fixed point ξ of ϕ . If the order of convergence is three then

(a.) $\phi'(\xi) = 0, \phi''(\xi) = 0$ (b.) $\phi'(\xi) \neq 0, \phi''(\xi) = 0$ (c.) $\phi'(\xi) = 0, \phi''(\xi) \neq 0$ (d.) $\phi'(\xi) \neq 0, \phi''(\xi) \neq 0$

23.

GATI	E - 2009			www.dipsacademy.com
27.		$\rightarrow R$ be a twice continuously		(c.) 26 (d.) 44
	differentiable $\int_{1}^{2} a(x) dx$	function. If	31.	Which of the following sequence $\{f_n\}_{n=1}^{\infty}$
	-	f(1), then the error in the	011	of functions does NOT converge
	approximation $f'(z)$			uniformly on [0, 1]?
	12	some $\xi \in (0,2)$		(a.) $f_n(x) = \frac{e^{-x}}{n}$
	2	some $\xi \in (0,2)$		(b.) $f_n(x) = (1-x)^n$
	3	some $\xi \in (0,2)$	F	(c.) $f_n(x) = \frac{x^2 + nx}{n}$
	-	some $\xi \in (0,2)$	22	(d.) $f_n(x) = \frac{\sin(nx+n)}{n}$
28.		$t \in R$, consider the linear	32.	Let $E = \{(x, y) \in R^2 : 0 < x < y\}$. Then
	programming programming $z =$	-		$\iint_{F} y e^{-(x+y)} dx dy =$
	Subject to $x +$		C	
	<i>x</i> + 2	$3y \le t$		(a.) $\frac{1}{4}$
		$0, y \ge 0$		(b.) $\frac{3}{2}$
	The maximum (a.) 50	value of z is 400 for t =	20	
	(b.)100			(c.) $\frac{4}{3}$
	(c.) 200			$(d.)\frac{3}{4}$
29.	(d.)300 The minimum	value of		
29.	$z = 2x_1 - x_2 + x_3$	$x_3 - 5x_4 + 22x_5$ subject to	33.	Let $f_n(x) = \frac{1}{n} \sum_{k=0}^n \sqrt{k(n-k)} {n \choose k} x^k (1-x)^{n-k}$
	$x_1 - 2x_4 + x_5 =$			for $x \in [0,1], n = 1, 2,$ If
	$x_2 + x_4 - 4x_5 =$			$\lim_{n \to \infty} f_n(x) = f(x) \text{ for } x \in [0,1], \text{ then the}$
	$x_3 + 3x_4 + 2x_5 =$ $x_j \ge 0, j = 1, 2,$			maximum value of $f(x)$ on [0,1] is
	$x_j = 0, j = 1, 2,$ is	,		(a.) 1
	(a.) 28			(b.) $\frac{1}{2}$
	(b.)19			
	(c.) 10 (d.)9			(c.) $\frac{1}{3}$
30.	Using the Hur	ngarian method, the optimal assignment problem whose		$(d.)\frac{1}{4}$
	cost matrix is g	given by	34.	Let $f:(c_{00}, \ .\ _1) \to C$ be a non zero
	5 23	14 8		continuous linear functional. The number
	10 25	1 23		of Hahn-Banach extensions of f to $(l^1, \ .\ _1)$
	35 16	15 12		is
	16 23	11 7		(a.) One (b.) Two
	is (a.) 29			(c.) Three
	(b.)52			(d.)infinite

- is (a.) 29
- (b.)52

GHIL		
35.	If $I: (l^1, \ .\ _2) \rightarrow (l^1, \ .\ _1)$ is the identity	
	map, then	
	(a.) Both I and I^{-1} are continuous	
	(b.)I is continuous but I^{-1} is NOT	
	continuous	
	(c.) I^{-1} is continuous but I is NOT	41.
	continuous	
	(d.)Neither I and I^{-1} is continuous	
36.	Consider the topology $\tau = \{G \subseteq R : R \setminus G\}$	
	is compact in $(R, \tau_u) \} \cup \{\phi, R\}$ on R, where	6
	τ_u is the usual topology on <i>R</i> and ϕ is the	
	empty set. Then (R, τ) is	
	(a.) a connected Hausdorff space	
	(b.) connected but NOT Hausdorff	42.
	(c.) hausdorff but NOT connected	
	(d.) neither connected nor Hausdorff	0
37.	Let	
	$\tau_1 = \{ G \subseteq R : G \text{ is finite or } R \setminus G \text{ is finite} \}$	
	and	
		12
	$\tau_2 = \{ G \subseteq R : G \text{ is contable or } R \setminus G \text{ is} $	17
	contable}	
	Then	
	(a.) neither τ_1 nor τ_2 is a topology on R	
	(b.) τ_1 is a topology on R but τ_2 is NOT a	
	topology on <i>R</i>	
	(c.) τ_2 is a topology on <i>R</i> but τ_1 is NOT a	9/
	topology on <i>R</i>	
20	(d.) both τ_1 and τ_2 are topologies on R Which are af the following it the of the	
38.	Which one of the following ideals of the	
	ring $Z[i]$ of Gaussian integers is NOT	43.
	maximal?	
	(a.) $\langle 1+i \rangle$	
	(b.) $\langle 1-i \rangle$	
	(c.) $\langle 2+i \rangle$	
	(d.) $\langle 3+i \rangle$	
39.	If $Z(G)$ denotes the centre of a group G,	
57.	then the order of the quotient group G,	
	G/Z(G) cannot be	
	(a.)4	
	(b.)6	
	(c.) 15	
	(1)25	44.
40.	Let Aut(G) denote the group of	++.
	automorphism of a group G. Which one of	
	the following is NOT a cyclic group?	

(b.) Aut(Z₆)
(c.) Aut(Z₈)
(d.) Aut(Z₁₀)
Let X be a non-negative integer valued

(a.) $Aut(Z_4)$

(a.) 1 (b.) 2

random variable with $E(X^2) = 3$

and E(X) = 1. Then $\sum_{i=1}^{\infty} iP(X \ge i) =$

(c.) 3 (d.) 4 42. Let X be a random variable with probability density function $f \in \{f_0, f_1\}$, where

$$f_0(x) = \begin{cases} 2x, & if \ 0 < x < 1 \\ 0, & otherwise \end{cases} \text{ and } \\ f_1(x) = \begin{cases} 3x^2, & if \ 0 < x < 1 \\ 0, & otherwise \end{cases}$$

For testing the null hypothesis $H_0: f \equiv f_0$ against the alternative hypothesis $H_1: f \equiv f_1$ at level of significance $\alpha =$ 0.19, the power of the most powerful test is

- (a.) 0.729 (b.) 0.271 (c.) 0.615
- (c.)0.013(d.)0.385
- 43. Let X and Y be independent and identically distributed U(0, 1) random variables. Then $P\left(Y < \left(X \frac{1}{2}\right)^2\right) =$

(a.)
$$\frac{1}{12}$$

(b.) $\frac{1}{4}$
(c.) $\frac{1}{3}$
(d.) $\frac{2}{3}$

44. Let X and Y be Banach spaces and let $T: X \rightarrow Y$ be a linear map. Consider the statements:

P: If $x_n \to x$ in X then $Tx_n \to Tx$ in Y.

Mathematics

Q: If $x_n \to x$ in X and $Tx_n \to y$ in Y then Tx = y. Then (a.) P implies Q and Q implies P (b.) P implies Q but Q does not imply P (c.) Q implies P but P does not imply Q (d.)Neither P implies Q nor Q implies P If y(x) = x is a solution of the differential 45. equation $y'' - \left(\frac{2}{r^2} + \frac{1}{r}\right)(xy' - y) = 0, 0 < x < \infty$, then its general solution is (a.) $\left(\alpha + \beta e^{-2x}\right)x$ (b.) $\left(\alpha + \beta e^{2x}\right) x$ (c.) $\alpha x + \beta e^{\lambda}$ (d.) $(\alpha e^x + \beta) x$ Let $P_n(x)$ be the Legendra polynomial of 46. degree n such that $P_n(1) = 1, n = 1, 2, \dots$ If $\int_{-\infty}^{1} \left(\sum_{j=1}^{n} \sqrt{j(2j+1)} P_j(x) \right)^2 dx = 20, \text{ then } n =$ (a.) 2 (b.)3 (c.)4 (d.)5 47. The integral surface satisfying the equation $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = x^2 + y^2$ and passing through the curve x = 1-1, y = 1+t, $z = 1+t^2$ is (a.) $z = xy + \frac{1}{2}(x^2 - y^2)^2$ (b.) $z = xy + \frac{1}{4}(x^2 - y^2)^2$ (c.) $z = xy + \frac{1}{8}(x^2 - y^2)^2$ (d.) $z = xy + \frac{1}{16}(x^2 - y^2)$ 48. For the diffusion problem $u_{xx} = u_t (0 < x < \pi, t > 0),$ u(0,t) = 0, $u(\pi,t) = 0$ and $u(x,0) = 3\sin 2x$, the

solution is given by

- (a.) $3e^{-t}\sin 2x$
- (b.) $3e^{-4t} \sin 2x$
- (c.) $3e^{-9t}\sin 2x$

- (d.) $3e^{-2t} \sin 2x$
- 49. A simple pendulum, consisting of a bob of mass m connected with a string of length a, is oscillating in a vertical plane. If the string is making an angle θ with the vertical, then the expression for the Lagrangian is given as

(a.)
$$ma^2 \left(\frac{\theta^2 - \frac{28}{a} \sin^2}{a} \right)$$

(b.) $2mga \sin^2 \left(\frac{\theta}{2} \right)$

 $a \left(2 \sigma \right)$

(c.)
$$ma^2 \left(\frac{\theta^2}{2} - \frac{2g}{a}\sin^2\left(\frac{\theta}{2}\right)\right)$$

(d.) $\frac{ma}{a} \left(\theta^2 - \frac{2g}{a}\cos\theta\right)$

$$2 \left(\begin{array}{c} a \end{array} \right)$$

The extremal of the functional

$$\int_{0}^{1} \left(y + x^{2} + \frac{y'^{2}}{4} \right) dx, y(0) = 0, y(1) = 0 \text{ is}$$

(a.)
$$4(x^2 - x)$$

(b.) $3(x^2 - x)$
(c.) $2(x^2 - x)$
(d.) $x^2 - x$

Common Data for Questions (51 & 52)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

 $T(x_1, x_2, x_3) = (x_1 + 3x_2 + 2x_3 + 3x_1 + 4x_2 + x_3, 2x_1 + x_2 - x_3)$

- 51. The dimension of the range space of T^2 is (a.) 0
 - (b.)1
 - (c.)2
 - (d.)3
- 52. The dimension of the null space of T³ is
 (a.)0
 (b.)1
 - (c.) 2 (d.) 3

Common Data for Questions (53 & 54)

Let $y_1(x) = 1 + x$ and $y_2(x) = e^x$ be two solutions of y''(x) + P(x)y'(x) + Q(x)y(x) = 0. 53. P(x) =(a.) 1 + x

Mathematics

$$(b.) -1 - x$$

$$(c.) \frac{1+x}{x}$$

$$(d.) \frac{-1-x}{x}$$

54. The set of initial conditions for which the above differential equation has NO solution is (a.) y(0) = 2, y'(0) = 1(h) v(1) = 0 v'(1) = 1

(b.)
$$y(1) = 0, y(1) = 1$$

(c.)
$$y(1) = 1, y'(1) = 0$$

(d.)
$$y(2) = 1, y'(2) = 2$$

Common Data for Questions (55 & 56)

Let X and Y be random variables having the joing probability density function

$$f(x, y) = \begin{cases} \frac{1}{\sqrt{2\pi y}} e^{\frac{-1}{2y}(x-y)^2}, & \text{if } -\infty < x < \infty, 0 < y < 1\\ 0, & \text{otherwise} \end{cases}$$

22. variance of the random

(a.)
$$\frac{1}{12}$$

(b.) $\frac{1}{4}$
(c.) $\frac{7}{12}$
(d.) $\frac{5}{12}$

56. The covariance between the random variables X and Y is

(a.)
$$\frac{1}{3}$$

(b.) $\frac{1}{4}$
(c.) $\frac{1}{4}$

(d.) Statement for Linked Answer Question (57 and 58)

Consider the function $f(z) = \frac{e^{t^2}}{z(z^2+1)}$.

57. The residue of f at the isolated singular point in the upper half plane $\{z = x + iy \in C : y > 0\}$ is

(a.)
$$\frac{1}{2e}$$

(b.) $\frac{-1}{e}$
(c.) $\frac{e}{2}$

(d.)2

 $(-1)^{-1}$

The Cauchy Principal Value of the integral 58.

$$\int_{-\infty}^{\infty} \frac{\sin x dx}{x(x^2 + 1)} \text{ is}$$
(a.) $-2\pi (1 + 2e^{-1})$
(b.) $\pi (1 + e^{-1})$
(c.) $2\pi (1 + e)$
(d.) $-\pi (1 + e^{-1})$

Statement for Linked Answer Question (59 and 60)

 $f(x, y) = kxy - x^3y - xy^3$ for $(x, y) \in \mathbb{R}^2$, Let where k is a real constant. The directional derivative of f at the point (1, 2) in the direction of

the unit vector
$$u = \left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$$
 is $\frac{15}{\sqrt{2}}$.

- 59. The value of k is
 - (a.) 2
 - (b.)4
 - (c.) 1

(d.)-2

60. The value of f at a local minimum in the rectangular region

$$R = \left\{ (x, y) \in R^{2} : |x| < \frac{3}{2}, |y| < \frac{3}{2} \right\}$$
 is
(a.) - 2
(b.) - 3
(c.) $\frac{-7}{8}$
(d.)0