Maximum Marks: 150

MATHEMATICS

Duration: Three Hours

<u>Notatio</u>	ns and Definitions used in the paper		(b.)Uniformly and also in L ¹ norm
R: The	set of real numbers.		(c.) Point wise but Not uniformly
$R^n = \{$	$(x_1, x_2, \dots, x_n): x_i \in R, i = 1, 2, \dots, n$		(d.) In L^1 norm but Not point wise
C: The	set of complex numbers.	4.	Let P_1 and P_2 be two projection operators
ϕ : The	empty set.	6-	on a vector space. Then
For any	subset E of X (or a topological space X).		(a.) P_1+P_2 is a projection if $P_1P_2=P_2P_1=0$
\overline{E} : The	e closure of E in X.		(b.) P_1 - P_2 is a projection if $P_1P_2 = P_2P_1 = 0$
E°: The	interior of E in X.		(c.) P_1+P_2 is a projection
E^c : The second sec	he complement of E in X.		$(d.)P_1-P_2$ is a projection
$Z = \{$	$\{0, 1, 2, \dots, n-1\}$	5. 🌈	Consider the system of linear equations
-n (·, ·, ·, ·, · · ·)		x + y + z = 3, $x - y - z = 4$, $x - 5y + kz = 6$
A° : Th	he transpose of a matrix A.	A	Then the value of k which this system has
			an infinite number of solutions is
	E MARKS QUESTIONS (1-20)		(a.) k = -5
			(b.)k = 0
1.	Consider R2 with the usual topology. Let	13	(c.)k = 1
	$S = \{(x, y) \in \mathbb{R}^2 : x \text{ is an integer } \}$. Then S	1	(d.)k = 3
	ic ((· · ·)		
	(a) Open but Net Closed	6	Let $A = \begin{bmatrix} 2 & 2 & 3 \end{bmatrix}$ and let
	(a.) Open but Not Closed (b.) Both open and closed	0.	A - 2 2 3 and let
	(c.) Neither open nor closed		$\begin{bmatrix} x & y & z \end{bmatrix}$
	(d) Closed but Not open		$V = \{(x, y, z) \in \mathbb{R}^3 : \det(A) = 0\}$. Then the
r	Suppose $\mathbf{V} = \{\alpha, \beta, \delta\}$ Let	O	dimension of V sousis
∠.	Suppose $\mathbf{A} = \{\alpha, p, o\}$. Let	~//	(a) O
	$\mathfrak{I}_1 = \{\phi, X, \{\alpha\}, \{\alpha, \beta\}\}$ and		(a.)0
	$\mathbf{\tilde{T}} = \left(\mathbf{A} \mathbf{V} \left(\mathbf{r} \right) \left(0 \mathbf{S} \right) \right)$		$(0.)^{1}$
	$\mathcal{S}_2 = \{ \varphi, X, \{\alpha\}, \{\beta, o\} \}.$		(0.)2
	Then		(1)
	(a.) Both $\mathfrak{I}_1 \cap \mathfrak{I}_2$ and $\mathfrak{I}_1 \cup \mathfrak{I}_2$ are	7.	Let $S = \{0\} \cup \{\frac{1}{n-2} : n = 1, 2,\}$. Then
	topologies		(4n+7)
	(b.)Neither $\mathfrak{I}_1 \cap \mathfrak{I}_2$ nor $\mathfrak{I}_1 \cup \mathfrak{I}_2$ is a		the number of analytic functions which
	topology		banish only on S is
	(c) $\overline{1} \cup \overline{3}$ is a topology but $\overline{3} \cap \overline{3}$ is		(a.) Infinite
	$(\mathbf{c}, \mathbf{b}_1 \cup \mathbf{b}_2) = \mathbf{b} + \mathbf{c} + \mathbf{b} + $		(b.)0
	Not a topology		(c.) 1
	(d.) $\mathfrak{I}_1 \cap \mathfrak{I}_2$ is a topology but $\mathfrak{I}_1 \cup \mathfrak{I}_2$ is		(d.)2
	not a topology	8	It is given that $\sum_{n=1}^{\infty} a z^n$ converges at $z =$
3.	For a positive integer n, let $f_n : R \to R$ be	0.	It is given that $\sum_{n=0}^{n-1} a_n z$. converges at $z =$
	defined by		3+i4. Then the radius of convergence of
			$\sum_{n=1}^{\infty}$
	$f(x) = \frac{1}{\sqrt{n+5}}$, If $0 \le x \le n$		the power series $\sum_{n} a_n z^n$ is
	$J_n(w)$ T_{n+J} Otherwise		$(a) \leq 5$
	(U Otherwise		$(a.) \ge 5$
	Then $\{f_n(x)\}$ converges to zero		$(0.) \leq J$
	(a) Uniformly but Not in L^1 norm		$(\mathbf{U},\mathbf{J}) \leq \mathbf{J}$
			(0.)>3

GATE - 200	7					www.dipsacademy.com
9. The $G = \{$	value $\alpha, 1, 3, 9, 1$	of α 9,27 is	for a cyclic	which group	14.	Let X and Y be jointly distributed random variables having the joint probability density function
(a.) 5 (b.) 13 (c.) 23	5 5	cation modu	10 56 18			$f(x, y) = \begin{cases} \frac{1}{\pi}, & \text{if } x^2 + y^2 \le 1\\ 0 & \text{otherwise} \end{cases}$
(d.)3: 10. Const 24. T	5 ider Z_{24} a 'hen the r	the additive number of e	ve group i lements o	modulo f order		Then $P(Y > \max(X, -X)) =$ (a.) $\frac{1}{2}$
8 in ti (a.) 2 (b.) 2 (c.) 3 (d.) 4	he group	Z ₂₄ is			F	(b.) $\frac{1}{3}$ (c.) $\frac{1}{4}$
11. Defin	the $\int 1$,	$f: R^2 \to if xy = 0,$	· R	by	1.	$(d.)\frac{1}{6}$
$f(x, x) = \frac{f(x, y)}{(a, S)}$ (a) S (b) S (c) S (c) S (d) S 12. Constants max. Subjee Then. (a.) T these (b.) B op (c.) T	$y) = \begin{cases} 2, \\ 2, \\ 2, \\ 2, \\ 2, \\ 2, \\ 2, \\ 2,$	near program $c_2x_2, c_1, c_2 > x_1 + x_2 \le 3$ $2x_1 + 3x_2 \le x_1, x_2 \ge 0$. has an opti- loes Not h primal and utions has an opti-	nming pr > 0 4 mal solut ave an o the dua nal solut	oblem, ion but optimal i have	15.	Let X_1, X_2, \dots be a sequence of independent and identically distributed chi-square random variables, each having 4 degree of freedom. Define $S_n = \sum_{i=1}^n X_i^2$, $n = 1, 2, \dots$, If $\frac{S_n}{n} \xrightarrow{p} \mu$, as $n \to \infty$, then $\mu =$ (a.) 8 (b.) 16 (c.) 24 (d.) 32 Let $\{E_n : n = 1, 2, \dots\}$ be a decreasing sequence of Lebesgue measurable sets on R and let F be a Lebesgue measurable set on R and let F be a Lebesgue measurable set on R such that $E_1 \cap F = \phi$. Suppose that F has Lebesgue measure 2 and the Lebesgue measure of E_n equals $\frac{2n+2}{3n+1}$, $n = 1, 2, \dots$. Then the Lebesgue measure of the set
th sc (d.)N oj	e primal plution feither the ptimal sol	does not l e primal no utions	nave an o r the dua	optimal al have		$\left(\bigcap_{n=1}^{\infty} E_n\right) \cup F \text{ equals}$ (a.) $\frac{5}{2}$
13. Let $x_k = t$ the $f[x_0]$	f(x) = k, k = 0,1 $, x_1, x_2, x_3,$	$x^{10} + x - 1, x$,2,,10. T livided x_4, x_5, x_6, x_7	$\in R$ and hen the v dif x_8, x_9, x_{10}	d let alue of ference] is		3 (b.)2 (c.) $\frac{7}{3}$ (d.) $\frac{8}{3}$
(a.) (b.)0 (c.)1 (d.)10	0				17.	³ The extremum for the variational problem

www.dipsacademy.com

22.

23.

24.

25.

	$\int_{8}^{\frac{\pi}{8}} \left(\left(y'\right)^{2} + 2yy' - 16y^{2} \right) dx y(0) = 0 y\left(\frac{\pi}{2}\right) = 1$
	$\int_{0}^{1} \left((y') + 2y' + 10y' \right)^{2kk} (y') = 0, \ y' = 0$
	occurs for the curve (a.) $y = \sin(4x)$
	(b.) $y = \sqrt{2} \sin(2x)$
	(c) $y = 1 - \cos(4x)$
	(d.) $y = \frac{1 - \cos(8x)}{2}$
18.	Suppose $y_n(x) = x\cos(2x)$ is a particular
	solution of $y^n + \alpha y = -4\sin(2x)$.
	Then the constant α equals
	(a.)-4
	(b.)-2
	(d.)4
19.	If $F(s) = \tan^{-1}(s) + k$ is the Laplace
	transform of some function $f(t), t \ge 0$,
	then k =
	(a.) $-\pi$
	(b.) $-\frac{\pi}{2}$
	(c.)0 ²
	$(d.)\frac{\pi}{2}$
20	$\frac{1}{2}$
20.	Let $S = \{0, 1, 1\}(1, 0, 1), (-1, 2, 1)\} \subseteq K$. Suppose \mathbb{R}^3 is endowed with the standard
	inner product () Define
	$M = \left\{ x \in \mathbb{R}^3 : (x,y) = 0 \text{for all } y \in \mathbb{S} \right\}$
	$M = \{x \in K : (x, y) = 0 \text{ for all } y \in S\}.$ Then the dimension of M reveals
	(a,)0
	(b.)1
	(c.)2
	(d.)5
TWC	MARKS QUESTIONS (21-75)
21.	Let X be an uncountable set and let \tilde{z}
	$\mathfrak{I} = \{ U \subseteq X : U = \phi \text{ or } U^{\circ} \text{ if finite } \}$
	Then the topological space (X, \mathfrak{I})
	(a.) Is separable (b.) Is Hausdorff
	(c.) Has a countable basis
	(d.)Has a countable basis at each point

Suppose (X, \mathfrak{I}) is a topological space. Let $\{S_n\}_{n>1}$ be a sequence of subsets of X. Then (a.) $(S_1 \cup S_2)^{\circ} = S_1^{\circ} \cup S_2^{\circ}$ (b.) $\left(\bigcup S_n\right) = \bigcup S_n^{\circ}$ (c.) $\overline{\bigcup S_n} = \bigcup \overline{S_n}$ (d.) $\overline{S_1 \cup S_2} = \overline{S_1} \cup \overline{S_2}$ Let (X, d) be a metric space. Consider the metric ρ on X defined by $\rho(x, y) = \min\{\frac{1}{2}, d(x, y)\} | x, y \in X.$ Suppose \mathfrak{I}_1 and \mathfrak{I}_2 are topologies on X defined by d and p, respectively. Then (a.) \mathfrak{I}_1 is a proper subset of \mathfrak{I}_2 (b.) \mathfrak{I}_2 is a proper subset of \mathfrak{I}_1 (c.) Neither $\mathfrak{I}_1 \subseteq \mathfrak{I}_2$ nor $\mathfrak{I}_2 \subseteq \mathfrak{I}_1$ (d.) $\mathfrak{I}_1 = \mathfrak{I}_2$ A of basis $V = \{(x, y, z, w) \in R^4 : x + y - z = 0,$ y + z + w = 0, 2x + y - 3z - w = 0(a.) $\{(1,1,-1,0), (0,1,1,1), \{(2,1,-3,1)\}$ (b.) $\{(1, -1, 0, 1)\}$ (c.) $\{(1,0,1,-1)\}$ $(d.) \{ (1,-1,0,1), (1,0,1-1) \}$ Consider R^3 with the standard inner product. Let $S = \{(1,1,1), (2,-1,2), (1,-2,1)\}.$ For a subset W of R^3 , let L(W) denote the linear span of W in R^3 . Then an orthonormal set T with L(S) = L(T) is (a.) $\left\{\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{6}}(1,-2,1)\right\}$ (b.) $\{(1,0,0), (0,1,0), (0,0,1)\}$ (c.) $\left\{\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(1,-1,0)\right\}$ (d.) $\left\{\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(0,1,-1)\right\}$

26. Let A be a 3×3 matrix. Suppose that the eigen values of A are -1, 0, 1 with

	respective eigen vectors $(1,-1,0)^t$,
	$(1,1-2)^{t}$ and $(1,1,1)^{t}$. Then 6A equals
	$\begin{bmatrix} -1 & 5 & 2 \end{bmatrix}$
	(a.) $5 -1 2$
	$(b.) \begin{vmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \end{vmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$
	(c_{1}) $\begin{bmatrix} 1 & 3 & 3 \\ 5 & 1 & 3 \end{bmatrix}$
	(d.) 9 -3 0
27.	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation
	T((x, y, z)) = (x + y - z, x + y + z, y - z).
	Then the matrix of the linear
	transformation T with respect to the
	$B = \{(0,1,0), (0,0,1), (1,0,0)\} \text{ of } \mathbb{R}^3 \text{ is } 0$
	$\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$
	(a.) 1 1 1
	(b.) 1 1 1
	$(c.) \begin{vmatrix} 1 & -1 & 0 \end{vmatrix}$
7	
	(d.) 1 1 1
28.	Let $Y(x) = (y_1(x), y_2(x))$ and let
	$A = \begin{bmatrix} -3 & 1 \end{bmatrix}$
	Further, let S be the set of values of k for

Further, let S be the set of values of k for which all the solutions of the system of equations Y'(x) = AY(x) tend to zero $x \to \infty$. Then S is given by

(a.) $\{k : k \le -1\}$ (b.) $\{k : k \le 3\}$ (c.) $\{k: k < -1\}$ (d.) $\{k: k < 3\}$ Let $u(x, y) = f(xe^{y}) + g(y^{2}\cos(y))$ 29. Where f and g are infinitely differentiable functions. Then the partial differential equation of minimum order satisfied by u is (a.) $u_{xy} + xu_{xx} = u_x$ (b.) $u_{xy} + xu_{xx} = xu_{x}$ (c.) $u_{xy} - xu_{xx} = u_x$ (d.) $u_{xy} - xu_{xx} = xu_{x}$ Let C be the boundary of the triangle 30. formed the by points (1,0,0),(0,1,0),(0,0,1).Then the value of the line integral $\oint -2ydx + (3x - 4y^2)dy + (z^2 + 3y)dz$ is (a.)0 (b.)1 (c.)2 (d.)4Let X be a complete metric space and let $E \subset X$. Consider the following statements: (S_1) E is compact E is closed and bounded (S_2) (S_3) E is closed and totally bounded Every sequence in E has a (S_4) subsequence converging in E $(a.)S_1$ $(b.)S_2$ $(c.)S_3$ (d.)S₄ Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \sin(nx)$. 32. Then the series

Then the series

- (a.) Converges uniformly on R
- (b.)Converges point wise but not uniformly on R
- (c.) Converges in L1 norm to an integrable function on $[0, 2\pi]$ but does not converge uniformly on R
- (d.)Does not converge point wise

www.dipsacademy.com

33. Let f(z) be an analytic function. Then the value of $\int_{0}^{2\pi} f(e^{it}) \cos(t) dt$ equals (a.)0(b.) $2\pi f(0)$ (c.) $2\pi f'(0)$ (d.) $\pi f'(0)$ 34. Let G_1 and G_2 be the images of the disc $\{z \in C : |z+1| < 1\}$ under the $w = \frac{(1-i)z+2}{(1-i)z+2}$ transformations and $w = \frac{(1+i)z+2}{(1+i)z+2}$ respectively. Then (a.) $G_1 = \{ w \in C : Im(w) < 0 \}$ and $G_2 = \{ w \in C : Im(w) < 0 \}$ $\in \mathbf{C}$: Im(w) ? 0} $(b.)G_1 = \{w \in C : Im(w) > 0\}$ and $G_2 = \{w \in C : M(w) > 0\}$ $\in C : Im(w) < 0$ (c.) $G_1 = \{w \in C : Im(w) > 2\}$ and $G_2 = \{w \in C : Im(w) > 2\}$ \in C : Im(w) < 2} $(d.)G_1 = \{w \in C : Im(w) < 2\}$ and $G_2 = \{w\}$ $\in C$: Im(w) > 2} Let $f(z) = 2z^2 - 1$. Then the maximum 35. value of |f(z)| on the unit disc $D = \{z \in C : |z| \le 1\}$ equals (a.) 1 (b.)2 (c.)3 (d.)4 Let $f(z) = \frac{1}{z^2 - 3z + 2}$ 36. Then the coefficient of $\frac{1}{z^3}$ in the Laurent series expansion of f(z) and is (a.)0 (b.)1 (c.) 3 (d.)5 Let $f: C \to C$ be an arbitrary analytic 37. function satisfying f(0) = 0and f(1) = 2. Then (a.) there exists a sequence $\{z_n\}$ such that $|z_n|$ and $|f(z_n)| > n$ (b.) there exists a sequence $\{z_n\}$ such that $|z_n|$ and $|f(z_n)| < n$ (c.) there exists a bounded sequence $\{z_n\}$ such that $|z_n|$ and $|f(z_n)>n$

(d.) there exists a sequence $\{z_n\}$ such that $z_n \rightarrow 0$ and $f(z_n) \rightarrow 2$ 38. Define $f: C \to C$ by $f(z) = \begin{cases} 0, & \text{if } \operatorname{Re}(z) = 0 \text{ or } \operatorname{Im}(z = 0,) \\ z, & \text{otherwise} \end{cases}$ Then the set of points where f is analytic is (a.) $\{z : \text{Re}(z) \neq 0 \text{ and } \text{Im}(z) \neq 0\}$ (b.) { $z : \text{Re}(z) \neq 0$ } (c.) $\{z : \text{Re}(z) \neq 0 \text{ or } \text{Im}(z) \neq 0\}$ $(d.) \{ z : Im(z) \neq 0 \}$ Let U(n) be the set of all positive integers 39. less than *n* and relatively prime to n. Then U(n) is a ground under multiplication modulo n. For n = 248, the number of elements in U(n) is (a.) 60 (b.)120 (c.) 180 (d.)240 Let R(x) by the polynomial ring in x with 40. real coefficients and let $I = (x^2 + 1)$ be the ideal generated by the polynomial $x^2 + 1$ in R[x]. Then (a.) I is a maximal ideal (b.) I is a prime ideal but NOT a maximal ideal (c.) I is NOT a prime ideal (d.)R[x]/I has zero divisors 41. Consider Z_5 and Z_{20} as ring modulo 5 and 20, respectively. Then the number of homomorphism $\phi: Z5 \rightarrow Z_{20}$ is (a.) 1 (b.)2 (c.)4 (d.)5 42. Let Q be the field of rational number and consider Z_2 as a field modulo 2. Let f(x) = $x_3 - 9x_2 + 9x + 3$. Then f(x) is (a.) irreducible over Q but reducible over \mathbb{Z}_2 (b.) irreducible over both O and Z_2 (c.) reducible over Q but irreducible over Z_2 (d.) reducible over both Q and Z_2 43. Consider Z₅ as field modulo 5 and let $f(x) = x^5 + 4x^4 + 4x^3 + 4x^2 + x + 1$ Then the zero of f(x) and over Z_5 are 1 and 3, with respective multiplicity (a.) 1 and 4 (b.)2 and 3

www.dipsacademy.com

(c.) 2 and 2 (d.)1 and 2 44. Consider the Hilbert $l^{2} = \left\{ x = \{x_{n}\} : x_{n} \in R, \sum_{n=1}^{\infty} x_{n}^{2} < \infty \right\}$ Let $E = \left\{ \left\{ x_n \right\} : \mid x_n \mid \le \in \frac{1}{n} \text{ for all } n \right\}$ be a subset of l^2 . Then (a.) $E^0 = \left\{ x : |x_n| < \frac{1}{n} \text{ for all } n \right\}$ (b.) $E^0 = E$ (c.) $E^0 = \left\{ x : |x_n| < \frac{1}{n} \text{ for all but finitely many } n \right\}$ (d.) $E^0 = \phi$ 45. Let X and Y be normed liner spaces and the T : X \rightarrow Y be a linear map. Then T is continuous if (a.) Y is finite dimensional (b.) X is finite dimensional (c.) T is one to one (d.) T is onto 46. Let X be a normed linear space and let E_1 , $E_2 \subseteq X$. Define $E_1 + E_2 = \{x + y : x \in E_1, y \in E_2\}.$ Then $E_1 + E_2$ is (a.) open if E_1 or E_2 is open (b.)NOT open unless both E_1 and E_2 are open (c.) closed if E_1 or E_2 is closed (d.) closed if both E_1 and E_2 are closed 47. For each $a \in R$, consider the linear programming problem Max. $z = x_1 + 2x_2 + 3x_3 + 4x_4$ subject to $ax_1 + 2x_2 \leq 1$ $x_1 + ax_2 + 3x_4 \le 2$

space

49.

50.

51.

$$x_1, x_2, x_3, x_4 \ge 0.$$

Let S { $a \in R$: the given LP problem has a basic feasible solution }. Then

(a.)
$$S = \phi$$

(b.) $S = R$

(c.) $S = (0, \infty)$

$$(d_{1})S = (-\infty, 0)$$

48. Consider the linear programming problem Max. $z = x_1 + 5x_2 + 3x_3$ subject to

 $2x_1 - 3x_2 + 5x_3 \le 3$ $3x_1 + 2x_3 \le 5$ $x_1, x_2, x_3 \ge 0.$ Then the dual of this LP problem (a.) has a feasible solution but does NOT have a basic feasible solution (b.) has a basic feasible solution (c.) has infinite number of feasible solutions (d.) has no feasible solution Consider a transportation problem with two warehouses and two markets. The warehouse capacities are $a_1 = 2$ and $a_2 = 4$ and the market demands are $b_1 = 3$ and b_2 = 3. let x_{ij} be the quantity shipped from warehouse i to market j and c_{ij} be the corresponding unit cost. Suppose that $c_{11} =$ 1, $c_{21} = 1$ and $c_{22} = 2$. Then $(x_{11}, x_{12}, x_{21}, x_{2$ $x_{22} = (2, 0, 1, 3)$ is optimal for every $(a.)x_{12} \in [1, 2]$ $(b.)x_{12} \in [0, 3]$ $(c.)x_{12} \in [1,3]$ $(d.)x_{12} \in [2, 4]$ The smallest degree of the polynomial that interpolates the data -2 0 X -1 1 2 3 f(x)-58 -21 -12 -13 -6 27 is (a.)3 (b.)4 (c.)5 (d.)6 Suppose that x_0 is sufficiently close to 3. Which of the following iterations $x_{n+1} =$ $g(x_n)$ will converge to the fixed point x =3? (a.) $x_{n+1} = -16 + 6x_n + \frac{3}{x}$ (b.) $x_{n+1} = \sqrt{3 + 2x_n}$ (c.) $x_{n+1} = \frac{3}{x - 2}$

(d.) $x_{n+1} = \frac{x_n^2 - 2}{2}$ 52.

Consider quadrature the formula. $\int_{-1}^{1} |x| f(x) dx \approx \frac{1}{2} \left[f(x_0) + f(x_1) \right]$

Where x_0 and x_1 are quadrature points. Then the highest degree of the polynomial, for which the above formula is exact, equals

GATE - 2007			www.dipsacademy.com
(a.) 1 (b.)2 (c.) 3			$\overline{X} = \frac{1}{5} \sum_{i=1}^{5} X_i, \text{ and } T = \sum_{i=1}^{5} (X_i - \overline{X})^2$
(d.)4 53. Let A, B and C P(A) = 0.4, F P(C) = 0.+ and Then $P(A \cup B)$	C be three events such that $P(B) = 0.5, P(A \cup B) = 0.6,$ $P(A \cup B \cup C^c) = 0.1$ C)=		Then $E(T^2X^2) =$ (a.) 3 (b.) 3.6 (c.) 4.8 (d.) 5.2
(a.) $\frac{1}{2}$ (b.) $\frac{1}{3}$ (c.) $\frac{1}{4}$ (d.) $\frac{1}{2}$	- 7	57.	Let $x_1 = 3.5$, $x_2 = 7.5$ and $x_3 = 5.2$ be observed values of random sample of size three from a population having uniform distribution over the interval $(\theta, \theta + 5)$, where $\theta \in (0, \infty)$ is unknown and is to be estimated. Then which of the following is NOT a maximum likelihood estimate of θ ? (a.) 2.4
5 54. Consider two where the box and 5-i-1 white the number of of the die be N balls are dowr box B ₁ , other with replacem probability tha	identical boxes B_1 and B_2 , B (i = 1, 2) contains i +2 red e balls. A fair die is cast. Let dots shown on the top face I. If N is even or 5, then two with replacement from the wise, two balls are drawn ent from the box B_2 . The t the two drawn balls are of	58.	(b.) 2.7 (c.) 3.0 (d.) 3.3 The value of $\int_{0}^{\infty} \int_{1/y}^{\infty} x^{4} e^{-x^{3}y} dx dy$ equals (a.) $\frac{1}{4}$ (b.) $\frac{1}{3}$
different colou (a.) $\frac{7}{25}$ (b.) $\frac{9}{25}$ (c.) $\frac{12}{25}$ (d.) $\frac{16}{25}$	rs is	59.	(c.) $\frac{1}{2}$ (d.) 1 $\lim_{n \to \infty} \left[(n+1) \int_0^1 x^n \ln(1+x) dx \right] =$ (a.) 0 (b.) In 2 (c.) In 3 (d.) ∞
55. Let X_1 , X_2 independent a random variab $P(X_1 = -1) =$ Suppose for th variable Z, P(-	, be a sequence of and identically distributed le with $P(X_1 = 1) = \frac{1}{2}$ ne standard normal random $0.1 < Z \le 0.1$ = 0.08.	60.	Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} x^4, & \text{if } x \text{ is rational,} \\ 2x^2 - 1, & \text{if } x \text{ is irrational} \end{cases}$ Let S be the set of points where f is continuous. Then (a.) S = {1} (b.) S = {-1} (c.) S = (-1, 1)
If $S_n = \sum_{i=1}^{n^2} X_i$, i (a.) 0.42 (b.) 0.46 (c.) 0.50 (d.) 0.54	then $\lim_{n \to \infty} P\left(S_n > \frac{n}{10}\right) =$	61.	(c.) $S = \{-1, 1\}$ (d.) $S = \phi$ For a positive real number p, let $(f_n: n = 1, 2,)$ be a sequence of functions defined on [0, 1] by $\left[n^{p+1}x, if \ 0 \le x \frac{1}{p}\right]$
56. Let X ₁ , X ₂ , size 5 from a normal distribu	., X_5 be a random sample of population having standard ution. Let		$f_n(x) = \begin{cases} n \\ \frac{1}{x^p}, & \text{if } \frac{1}{n} < x \le 1 \end{cases}$

Let $f(x) = \lim_{n \to \infty} f_n(x), x \in [0, 1]$. Then, on [0, 1](a.) f is Riemann integrable $\int_{1}^{1} f(x) dx$ improper integral (b.) the converges for $p \ge 1$ integral $\int_{a}^{1} f(x) dx$ improper (c.) the converges for p < 1 $(d.)f_n$ converges uniformly 62. Which of the following inequality is NOT true for $x \in \left(\frac{1}{4}, \frac{3}{4}\right)$ (a.) $e^{-x} > \sum_{i=0}^{2} \frac{(-x)^{j}}{i!}$ (b.) $e^{-x} < \sum_{i=0}^{3} \frac{(-x)^{i}}{i!}$ (c.) $e^{-x} > \sum_{i=0}^{4} \frac{(-x)^{i}}{i!}$ (d.) $e^{-x} > \sum_{i=0}^{5} \frac{(-x)^{i}}{i!}$ 63. Let u(x, y) be the solution of the Cauchy problem $xu_x + u_y = 1, u(x, 0) = 2 \ln(x), x > 1$ Then u(e,1) =(a.) - 1(b.)0 (c.)1 (d.)e 64. Suppose $y(x) = \lambda \int_0^{2\pi} y(t) \sin(x+t) dt, x \in [0, 2\pi]$ has eigenvalue $\lambda = \frac{1}{\pi}$ and $\lambda = -\frac{1}{\pi}$, with corresponding eigenfunctions $y_1(x) = \sin(x) + \cos(x)$ and $y_2(x) = \sin(x) - \cos(x),$ respectively. Then the integral equation $y(x) = f(x) + \frac{1}{2} \int_{0}^{2\pi} y(t) \sin(x+t) dt, x \in [0, 2\pi]$ has a solution when f(x) =(a.) 1 $(b.)\cos(x)$ (c.) sin(x) $(d.) 1 + \sin(x) + \cos(x)$ 65. Consider the Neumann problem

 $u_{xx}u_{yy} = 0, 0 < x, < \pi, -1 < y < 1$ $u_{x}(0, y) = u_{x} = (\pi, y) = 0,$ $u_{y}(x,-1) = 0, u_{y}(x,1) = \alpha + \beta \sin(x)$ The problem admits solution for (a.) $\alpha = 0, \beta = 1$ (b.) $\alpha = -1, \beta = \frac{\pi}{2}$ (c.) $\alpha = 1, \beta = \frac{\pi}{2}$ (d.) $\alpha = 1, \beta = -\pi$ 66. The functional $\int_0^1 (1+x)(y;)^2 dx, y(0) = 0, y(1) = 1,$ possesses (a.) strong maxima (b.) strong minima (c.) weak maxima but NOT a strong maxima (d.)weak minima but NOT a strong minima The value of α for which the integral 67. equation $u(x) = \alpha \int_{0}^{1} e^{x-t} u(t) dt$, has a nontrivial solution is (a.) - 2(b.)-1 (c.) 1 (d.)268. Let $P_n(x)$ be the Legendre polynomial of degree n and let $P_{m+1}(0) = -\frac{m}{m+1} P_m(0), m = 1, 2, \dots$ If $P_n(0) = -\frac{5}{16}$, then $\int_{-1}^{1} P_n^2(x) dx =$ (a.) $\frac{2}{13}$ (b.) $\frac{2}{2}$ (c.) $\frac{5}{16}$ $(d.)\frac{2}{5}$ 69. For which of the following pair of functions $y_1(x)$ and $y_2(x)$, continuous p(x) and q(x) can be function

determined on [-1, 1] such that $y_1(x)$ and

www.dipsacademy.com

 $y_2(x)$ give two linearly independent solution of $y''+p(x)y'+q(x)y=0, x \in [-1,1]$ (a.) $\frac{2}{13}$ (b.) $\frac{2}{9}$

(c.)
$$\frac{5}{16}$$

(d.) $\frac{2}{5}$

70. Let $J_0(.)$ and $J_1(.)$ be the Bessel functions of the first kind of orders zero and one, respectively.

If
$$\pounds (J_0(t)) = \frac{1}{\sqrt{s^2 + 1}}$$
, then $\pounds (J_1(t)) =$
(a.) $\frac{s}{\sqrt{s^2 + 1}}$
(b.) $\frac{1}{\sqrt{s^2 + 1}} = 1$

(c.)
$$1 - \frac{s}{\sqrt{s^2 + 1}}$$

(d.) $\frac{s}{\sqrt{s^2 + 1}} - 1$

COMMON DATA QUESTIONS

Common Data for Questions 71, 72, 73:

Let $P[0, 1] = \{p : p \text{ is a polynomial function on } [0, 1]\}$. For $p \in P[0, 1]$ define

 $||\mathbf{P}|| = \sup \{ |\mathbf{p}(\mathbf{x})| : 0 \le x \le 1 \}$

Consider the map $T:P[0, 1] \rightarrow P[0, 1]$ defined by

 $(Tp)(x) = \frac{d}{dx}(p(x)).$

- 71. The linear map T is

 (a.) one to one and onto
 (b.) one to one but NOT onto
 (c.) onto but NOT one to one
 (d.) neither one to one nor onto

 72. The normal linear space P[0, 1] is
 - (a.) a finite dimensional normed linear space which is NOT a Banach space
 - (b.) a finite dimensional Branch space
 - (c.) an infinite dimensional normed linear space which is NOT a Branch space(d.) an infinite dimensional Banach space

The map T is (a.) closed and continuous (b.) neither continuous nor closed (c.) continuous but NOT closed (d.) closed but NOT continuous

73.

Common Data for Questions 74, 75:

Let X and Y be jointly distributed random variables such that the conditional distribution of Y, given X = x, is uniform on the interval (x - 1, x)

$$x + 1$$
). Suppose E(X) = 1 and Var (X) = $\frac{3}{2}$.

74. The mean of the random variable Y is

(a.) –

(b.) 1 (c.) $\frac{3}{2}$

(d.)2

(a.)

(b.) $\frac{2}{3}$

(c.)1 (d.)2

75

The variance of the random variable Y is

TWO MARKS QUESTIONS (76-85)

Linked Answer Questions: 76-85 carry two marks each

Statement for Lined Answer Questions 76 and 77:

Suppose the equation $x^2y^n - xy' + (1+x^2)y = 0$

has a solution of the form $y = x^r \sum_{n=0}^{\infty} c_n x^n$, $c_0 \neq 0$

- 76. The indicial equation for r is (a.) $r^2 - 1 = 0$ (b.) $(r - 1)^2 = 0$ (c.) $(r + 1)^2 = 0$ (d.) $r^2 + 1 = 0$
- 77. For $n \ge 2$, the coefficients c_n will satisfy the relation

(a.) $n^2 c_n - c_{n-2} = 0$

(b.)
$$n^2 c_n + c_{n-2} = 0$$

(c.) $c_n - n^2 c_{n-2} = 0$
(d.) $c_n + n^2 c_{n-2} = 0$

Statement for Linked Answer Question 78 and 79:

A particle of mass *m* slides down without friction along a curve $z = 1 + \frac{x^2}{2}$ in the *xz*-plane under the action of constant gravity. Suppose the *z*-axis points vertically upwards. Let \dot{x} and \ddot{x} denote $\frac{dx}{dt}$ and $\frac{d^2x}{dt^2}$, respectively.

78. The Lagrangian of the motion is
(a.)
$$\frac{1}{2}m\dot{x}^{2}(1+x^{2}) - mg\left(1+\frac{x^{2}}{2}\right)$$

(b.) $\frac{1}{2}m\dot{x}^{2}(1+x^{2}) + mg\left(1+\frac{x^{2}}{2}\right)$
(c.) $\frac{1}{2}mx^{2}\dot{x}^{2} - mg\left(1+\frac{x^{2}}{2}\right)$
(d.) $\frac{1}{2}m\dot{x}^{2}(1+x^{2}) - mg\left(1+\frac{x^{2}}{2}\right)$

- 79. The Lagrangian equation of motion is (a.) $\ddot{x}(1+x^2) = -x(g+\dot{x}^2)$ (b.) $\ddot{x}(1+x^2) = x(g+\dot{x}^2)$ (c.) $\ddot{x} = -gx$
 - (d.) $\ddot{x}(1-x^2) = x(g+\dot{x}^2)$

Statements for Linked Answer Questions 80 and 81:

Let u(x, t) be the solution of the one dimensional wave equation

$$u_{tt} - 4u_{xx} = 0, -\infty < x < \infty, t > 0$$

$$u(x,0) = \begin{cases} 16 - x^2, & |x| \le 4, \\ 0, & otherwise, \end{cases}$$
 and

$$u_t(x,0) = \begin{cases} 1, & |x| \le 2, \\ 0, & otherwise, \end{cases}$$

80. For
$$1 < t < 3$$
, $u(2, t) =$
(a.) $\frac{1}{2} \Big[16 - (2 - 2t)^2 \Big] + \frac{1}{2} \Big[1 - \min\{1, t - 1\} \Big]$

www.dipsacademy.com

(b.)
$$\frac{1}{2} \Big[32 - (2 - 2t)^2 - (2 + 2t)^2 \Big] + t$$

(c.) $\frac{1}{2} \Big[32 - (2 - 2t)^2 - (2 + 2t)^2 \Big] + 1$
(d.) $\frac{1}{2} \Big[16 - (2 - 2t)^2 \Big] + \frac{1}{2} \Big[1 - \max\{1 - t, -1\} \Big]$

81. The value of ut(2, 2)
(a.) equals -15
(b.) equals -16
(c.) equals 0
(d.) does NOT exist

Statement for Linked Answer Questions 82 and 83:

Suppose $E = \{(x, y) : xy \neq 0\}$. Let $f : R^2 \rightarrow R$ be defined by

$$f(x, y) = \begin{cases} 0, & \text{if } xy = 0, \\ y \sin\left(\frac{1}{x}\right) + x \sin\left(\frac{1}{y}\right), & \text{otherwise.} \end{cases}$$

Let S_1 be the set of points in \mathbb{R}^2 where f_x exists and S_2 be the set of the points in \mathbb{R}^2 where f_y exists. Also, let E_1 be the set of points where f_x is continuous and E_2 be the set of points where f_y is continuous.

82. S_1 and S_2 are given by (a.) $S_1 = E \cup \{x, y\} : y = 0\}$, $S_2 = E \cup \{(x, y) : x = 0\}$ (b.) $S_1 = E \cup \{x, y\} : y = 0\}$, $S_2 = E \cup \{(x, y) : y = 0\}$ (c.) $S_1 = S_2 = R^2$ (d.) $S_1 = S_2 = E \cup \{(0, 0)\}$ 83. E_1 and E_2 are given by (a.) $E_1 = E_2 = S_1 \cap S_2$ (b.) $E_1 = E_2 = S_1 \cap S_2$ (c.) $E_1 = S_1, E_2 = S_2$ (d.) $E_1 = S_2, E_2 = S_1$

Statement for Linked Answer Questions 84 and 85:

Let $A\begin{bmatrix} 3 & 0 & 0 \\ 0 & 6 & 2 \\ 0 & 2 & 6 \end{bmatrix}$

and let $\lambda_1 \ge \lambda_2 \ge \lambda_3$ be the eigenvalue of A.

84. The triple $(\lambda_1, \lambda_2, \lambda_3)$ equals (a.) (9, 4, 2)

GATE - 2007	www.dipsacademy.com
(b.) $(8, 4, 3)$ (c.) $(9, 3, 3)$ (d.) $(7, 5, 3)$ 85. The matrix	x P such that
$P^{t}AP = \begin{bmatrix} y_{0} \\ 0 \\ 0 \end{bmatrix}$	$ \begin{bmatrix} \mathbf{J} & 0 \\ \mathbf{J}_2 & 0 \\ 0 & \mathbf{\lambda}_2 \end{bmatrix} $ is
(a.) $\begin{bmatrix} \frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ 1 \end{bmatrix}$
$\begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \end{bmatrix}$	$\overline{\overline{z}} \frac{1}{\sqrt{6}} \end{bmatrix}$
(b.) $\begin{vmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{vmatrix}$	$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$
(c.) $\begin{vmatrix} 0 & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 \end{vmatrix}$	
$\begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix}$	
$(\mathbf{d}.) \begin{bmatrix} \overline{\sqrt{2}} & 0 \\ \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$	$\left[\frac{\sqrt{2}}{\frac{1}{\sqrt{2}}}\right]$
Mathematics	