Part-B

- 1. Let A be a real symmetric $n \times n$ matrix. Then a necessary and sufficient condition for the map $(x, y) \rightarrow x^T A y$ to be an inner product on ; ^{*n*} (considered as the set of column vectors) is
 - 1. A is non-singular.
 - 2. A is positive definite.
 - 3. A is positive semi-definite.
 - 4. A is identity matrix.
- 2. The set of points where $f(x) = |\sin x|$ is not differentiable is

1.	empty	2.	{0}
3.	$\left\{k\pi: k \in \emptyset\right\}$	4.	$\left\{k\pi/2:k\in \not\!\!\!c\right\}$

- 3. Let $f(x) \pm x^3 \sin x, x \in [-\pi/2, \pi/2]$. Then f is
 - 1. bounded and of bounded variation.
 - 2. unbounded and of bounded variation.
 - 3. unbounded but not of bounded variation.
 - 4. bounded but not off bounded variation.
- 4. Let $S = \{(x, y, z) \in [3] | ax^2 + by^2 + cz^2 = 1\}$ where a, b, c are all positive. Then the set S is
 - 1. connected but not compact in $\frac{3}{3}$.
 - 2. not connected but compact in $\frac{3}{100}$.

- 3. connected and compact in $\frac{1}{3}$.
- 4. not connected and not compact in $\frac{1}{3}$.

5. Let
$$f_n:[0,1] \rightarrow ;$$
 be defined by $f_n(x) = \begin{cases} 1-n^2 x^{20 \le |x| \le 1/n} \\ 0 & 1/n \le |x|^1 \end{cases}$ for $n = 1$

1,2,....

Then the sequence of functions $f_{\rm n}$

- 1. converges point wise but not uniformly
- 2. converges uniformly
- 3. converges point wise and the limit function is continuous
- 4. does not converge pointwise.

6. Let
$$f_n:[0,1] \to ;$$
 be defined by $f_n(x) = nx^{n-1}$ for $n = 1, 1, 2, ...$

Then

- 1. $\lim \inf \int_{0}^{1} f_n(x) dx = \int_{0}^{1} \liminf f_n(x) dx$
- 2. $\int_{0}^{1} f_n(x) dx \neq \int_{0}^{1} \liminf f_n(x) dx$
- 3. $\lim \sup \int_{0}^{1} f_n(x) dx = \int_{0}^{1} \liminf f_n(x) dx$
- 4. lim sum $\int_{0}^{1} f_{n}(x) dx = \int_{0}^{1} \limsup f_{n}(x) dx$
- 7. Let $T: e^2 \rightarrow e^2$ be defined by

$$T(x_n) = \left(\left(\frac{1}{2}\right)^n x_n\right)$$
. Then

- 1. ||T|| = 1
- 2. T is not bounded
- 3. ||T|| = 0
- 4. ||T|| = 1/2

8. The value of
$$\int_C \frac{dz}{z^2 + 4x + 3}$$
 where $C(t) \setminus 2e^{it}, 0 \le t \le 2\pi$ is.

- 1. 0 2. πi
- 3. 2πi 4. 4πi
- 9. Let $f : \pounds \to \pounds$ be a non-constant entire function. Then $f(z) = \cos z$ for all z in £ if $f(x) = \cos z$ on D where D is
 - 1. $\{z = x + iy | x \text{ is rational } \}$
 - 2. $\{z = x + iy \mid x \text{ is an integer}\}$
 - 3. $\{z = x + iy \mid x \text{ and } y \text{ are integers}\}\$
 - 4. $\{z = (2n+1)\pi \mid n \in Z\}$
- 10. Let $f: j^2 \rightarrow j^3$ be defined by f(u, v) = (u, v, u + v). Then
 - 1. f is differentiable at (1, 2) and the derivative, as a linear map is given by $(h, k) \rightarrow (h, k, h+k)$
 - 2. f is not differentiable at (1, 2)

- f is differentiable at (1, 2) and the derivative as a linear map is given by (h, k) → (h,2k, h+2k)
- 4. f is differentiable at (1, 2) and the derivative as a linear map is given by $(h, k) \rightarrow (1, 2, 3)$
- Let C[0, 1] be the space of all continuous functions with sup norm.
 Let E denote the subspace of all polynomials in C[0, 1]. Then
 - 1. E is closed and infinite dimensional
 - 2. E is closed and finite dimensional
 - 3. E is not closed and infinite dimensional
 - 4. E is not closed and finite dimensional
- 6. A homogeneous system of 5 linear equations in 6 variables admits
 - 1. no solution in ; 6
 - 2. a unique solution in $\frac{1}{10}$
 - 3. infinitely many solutions in R
 - 4. finite, but more than 2 solutions in $\frac{1}{6}$
- 7. Let V be the space of all linear transformations from i ³ to i ² under usual addition and scalar multiplication. Then
 - 1. V is a vector space of dimension 5.
 - 2. V is a vector space of dimension 6.
 - 3. V is a vector space of dimension 8.
 - 4. V is a vector space of dimension 9.
- 8. Let R be a commutative ring. Let I and J be ideals of R.

Let $I - J = \{x - y | x \in I, y \in J\}$ and

$$IJ = \{xy \mid x, \in I, y \in J\}.$$
 Then.

- 1. I–J is an ideal and IJ is an ideal in R
- 2. I–J is an ideal and IJ need not be an ideal in R.
- 3. I–J need not be an ideal but IJ is an ideal in R.
- 4. Neither I–J nor IJ need to be an ideal in R.

9. Let
$$V = \{ (x_{1,...,x_{100}}) \in ; x_{12} = 3x_3 \text{ and } x_{51} = 0 \}$$
 Then

- 1. dim V = 98
 2. dim V = 49
 3. dim V = 99
 4. dim V = 97
- Let A and B be finite sets of m and n elements respectively, with m
 < n. Then there is a
 - 1. bijection from A onto B
 - 2. Surjective function from A onto B
 - 3. One-to-one (injective) function from A to B and a surjective function from B to A.
 - surjective function from A to B and an injective function from B to A.
- 11. Consider an $m \times m$ matrix

$$A = \begin{bmatrix} a & b & b & \dots & b \\ b & a & b & \dots & . \\ \vdots & & & & \\ b & b & \dots & b & a \end{bmatrix}$$

A is nonsingular if and only if

- 1. $a \neq b$
- 2. $a \neq -(m-1)b$
- 3. $a \neq b \text{ or } a \neq -(m-1)b$
- 4. $a \neq b$ and a $a \neq -(m-1)b$
- 12. Let A : $; {}^{6} \rightarrow ; {}^{5} and B : ; {}^{5} \rightarrow ; {}^{7}$ be two linear transformation. The which of the following can be true.
 - 1. A and B are one-one
 - 2. A is one-one and B is not one-one.
 - 3. A is onto and B is one-one
 - 4. A and B both are onto.
- 13. Let A be an $m \times n$ a matrix with rank m and B be an $p \times m$ a matrix with rank p. What will be the rank of BA? (p < m < n).
 - 1. m 2. p 3. n 4. p+m
- 14. A square matrix A is said to be idempotent if $A^2 = A$. An idempotent matrix is non-singular if and only if
 - 1. All eigenvalues are real
 - 2. All eigenvalues are nonnegative.
 - 3. All eigenvalues are either 1 or 0
 - 4. All eigenvalues are 1.

- 15. The polynomial $x^3 + 5x^2 + 5$ is
 - 1. irreducible over ϕ but reducible over ϕ_5
 - 2. irreducible over both ϕ and ϕ_5
 - 3. reducible over ϕ but irreducible over ϕ_5
 - 4. reducible over both ϕ and ϕ_5
- 16. Euler-Lagrange equation, which extremizes the functional

$$\iint_{D} \left\{ \left(\frac{\partial z}{\partial x} \right)^{2} + \left(\frac{\partial z}{\partial y} \right)^{2} \right\} dxdy \text{ with } z = f(x, y) \text{ on the boundary C of}$$

the domain D, where f(x, y) is a given function, constitutes the well known problem, known as

- 1. Cauchy problem
- 2. Dirichlet problem
- 3. Neumann problem
- 4. Robin or the third boundary value problem
- 17. Let the minimal polynomial of a linear transformation T from i^{4} to i^{4} be $x^{2} + x + 1$ Then,
 - 1. all eigenvalues of T are real.
 - 2. T has exactly one real eigenvalue.
 - 3. T has exactly 2 real eigenvalues.
 - 4. T has no real eigenvalue.

- 18. Let A be a symmetric idempotent matrix. Which of the following is not true?
 - 1. $det(A) \neq 0 \Longrightarrow A = I$
 - 2. Trace A = Rank A
 - 3. If the ith diagonal element of A is zero, at least one element in the ith row is non-zero.
 - 4. Every latent/characteristic root of A is either 0 or 1.
- 19. Let m be a natural number such that 3^m divides 25! but 3^{m+1} does not divide 25!, Then *m* is equal to
 - 1. 10 2. 8
 - 3. 25 4. 20
- 20. In ¢ [i]
 - 1. 5 and 6 are irreducible
 - 2. 5 is irreducible but 6 is reducible
 - 3. 5 is reducible but 6 is irreducible
 - 4. neither 5 nor 6 is irreducible
- 21. Let $S = \{z \in \pounds || z + i |>| z i |\}$. Then
 - 1. Im (z) > 0 for $z \in S$
 - 2. Im (z) < 0 for all $Z \in S$
 - 3. Re (z) > 0 for all $Z \in S$
 - 4. Re (z) < 0 for all $z \in S$

22. Let
$$a_n = n^n + \frac{(-1)^n}{n}$$
, $n = 1, 2, ...$ Then the sequence (a_n)

- 1. is convergent but not Cauchy.
- 2. is Cauchy but not convergent.
- 3. is not Cauchy but bounded.
- 4. does not have a convergent subsequence.

23. Let
$$a_n = (-1)^n \sin\left(\frac{n\pi}{2}\right)$$
, $n = 1, 2,$ Then

- 1. *lim inf* $a_n = -1$ and lim sup $a_n = 1$
- 2. *lim inf* $a_n = 0$ and lim sup $a_n = 1$
- 3. *lim inf* $a_n = -1$ and lim sup $a_n = 0$
- 4. *lim inf* $a_n = 1$ and lim sup $a_n = -1$
- 24. If $T(z) = \frac{az+b}{cz+d}$ where $ad-bc \neq 0$, is a Mobius transformation, the ∞
 - 1. is always a fixed point of T.
 - 2. is a fixed point of T and only if c=0.
 - 3. is never a fixed point.
 - 4. is a fixed point of T if and only if T is identity
- 25. If $f: \mathfrak{t} \to \mathfrak{t}'$ is a non constant entire function then the image of f
 - 1. is always equal to \pounds .

- 2. is a connected open subset of \pounds .
- 3. is a compact subset of \pounds .
- 4. $\lim_{2\to\infty} f(z) = \infty$ always.

26. Let
$$f(z) = \frac{z - \sin z}{z^2}, z \neq 0 \text{ and } C(t) = e^n, -\leq 2\pi$$

Then $\int_C f(z) dz$ is
1. 0 2. 1
3. -1 4. π

- 27. A pencil manufacturing company packs pencils in boxes, each box containing 10 pencils. If 10% of pencils produced by the company are defective, then the number of defective pencils in a randomly picked box has a
 - 1. symmetric distribution.
 - 2. positively skewed distribution.
 - 3. negatively skewed distribution.
 - 4. bimodal distribution.

28. Let
$$f(z) = \frac{\tan z - z}{z^3}$$
 for $z \neq 0$. Then $z = 0$ is

- 1. a removable singularity of f.
- 2. a pole of order 2 of f.
- 3. a pole of order 1 of f.

- 4. a pole of order 3 of f.
- 29. Any function that gives an extremum of the functional

$$\iint_{D} \left\{ \left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 + 2zf(x, y) \right\} dxdy \text{ must satisfy the so called}$$

- 1. harmonic equation
- 2. heat equation
- 3. wave equation
- 4. Poisson equation
- 30. The first order system of equations equivalent to

$$x^{n} + p(t)x' + q(t)x = 0$$
 is
 $\frac{dX}{dt} = A(t)X$ with $X\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$, and $\frac{dX}{dt} = \begin{pmatrix} x_{1}^{t} \\ x_{2}^{t} \end{pmatrix}$ where A (t) is the 2×2

matrix

$$1. \quad \begin{pmatrix} 1 & 0 \\ -p & -q \end{pmatrix}$$

$$2. \quad \begin{pmatrix} 0 & 1 \\ -q & -p \end{pmatrix}$$

 $3. \quad \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}$

$$4. \quad \begin{pmatrix} -p & -q \\ 1 & 0 \end{pmatrix}$$

- 31. Consider the boundary value problem (BVP) y"+ λy = 0, on [0, 2π], ^∈; with boundary conditions y(0) = y(2π) = 0. Then the above BVP has
 - 1. only trivial solution for every $\lambda \in i$.
 - 2. has a unique solution for all $\lambda \in i$.
 - 3. has nontrivial solution for a countable set of values of $\lambda \in i$.
 - 4. has a nontrivial solution for every $\lambda \in i$.
- 32. The function $f(x, y) = x |y|, (x, y) \in i \times i$
 - 1. satisfies a Lipschitz condition on the strip -1 $\leq x \leq 1, -\infty < y < \infty$.
 - 2. satisfies a Lipschitz condition on the strip

 $-\infty < x < \infty, -1 \le y \le 1.$

- 3. does not satisfy a Lipschitz condition on $-1 \le x \le 1, -1 \le y \le 1$.
- 4. does not satisfy a Lipschitz condition at any point on $i \times i$.
- 33. Consider the linear differential equation

 $y^{(3)} + 3xy^{(2)} + 4y^{(1)} + 2x^2y = \sin x, (x \in [0,1])$ Then the set of solutions of the above question.

- 1. is a linear space of infinite dimension.
- 2. is a linear space of dimension 3.
- 3. is not a linear space.
- 4. is a linear space of dimension less than 3.

12

34. The partial differential equation $(u_x)^4 u_{xx} + u_{yy} + (u_y)^2 = 0$ is

- 1. linear and of order 4
- 2. quasilinear and of order 2
- 3. quasilinear and of order 4
- 4. linear and of order 2.
- 35. Consider the linear programming problem:

Maximize $2x_1 - 3x_2 + x_3 + 4x_4$

subject to

 $x_1 - x_2 + x_4 \ge 4$

 $2x_1 - x_3 + 2x_4 \le 1$

 $x_1 + x_2 + x_2 \le 2$

 $x_1 \ge 0, x_2 \ge 0, x_3 \le 0, x_4 \ge 0.$

If (y_1, y_2, y_3) is a dual feasible solution, then

- 1. $y_1 > 0$ and $y_2 > 0$.
- 2. $y_1 \leq 0$ and $y_2 \geq 0$.
- 3. $y_2 < 0$ and $y_3 < 0$.
- 4. $y_2 < 0 \text{ and } y_3 \ge 0$
- 36. The second order partial differential equation

 $u_{xx} + 4u_{xy} + (\cos x)u_{yy} + e^{x}u_{x} + e^{y}u_{y} = 0$ has

- 1. exactly one characteristic curve passing through every point
- exactly one characteristic curve passing through the point (0, 2. 0).
- 3. Two distinct characteristic curves passing through every point.
- Three distinct characteristic curves passing through the point 4. (1, 3).
- The number of distinct homoporphisms from \mathbb{Z}_{12} to \mathbb{Z}_{25} 37.

1.	one		2.	two

- 3. three 4. four
- 38. The number of 5-Sylow subgroups of S_6 is

1.	16	2.	6
3.	36	4.	1

- Let G be a group of order 14 such that G is not abelian. Then the 39. number of elements of order 2 in G is equal to
 - 1. 7 2. 6
 - 3. 13 4. 2
- The solution of the Caughy problem $u_x + u_y = 0, u(x, 0) = e^x$ is 40.

 - 1. $u(x, y) = e^{x+y}$ 2. $u(x, y) = e^{x+e^{2y}}$ 3. $u(x, y) = e^{x-y}$

4.
$$u(x, y) = \frac{1}{2} \left[e^{x+y} + e^{x-y} \right]$$

41. The equation

$$u(x) = f(x) + \int_{a}^{a} K(x,t)u(t)dt$$
 is

- 1. a Volterra's linear integral equation of the first kind.
- 2. A Fredholm's linear integral equation of the first kind.
- 3. a Volterra's linear integral equation of the second kind.
- 4. a Fredholm's linear integral equation of the second kind.
- 42. Euler's equation of motion for a rigid body about a fixed point, in the absence of external forces, and $I_{xx} = 1_{yy}$ imply that the z-component of the angular velocity is
 - 1. a function of time
 - 2. a constant other than zero and unity
 - 3. zero
 - 4. unity.
- 43. Suppose that the minimal polynomial of a linear map $T: ; {}^5 \rightarrow ; {}^5$ is $x^2(x^3-1)$.

Then,

1.	$T \equiv 0$	2.	Det(T) = 0
3.	$Det(T) \neq 0$	4.	T is onto

NOTE :- Question after this are for statistics students only and therefore not included here