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Part-B 
1. The ODE for the family of straight lines xy t

t
   where t is a 

parameter that takes positive values is 

1. yy' = xy'2 + 1 and has no singular solutions. 

2. yy'2 = xy' + 1 and has no singular solutions. 

3. yy' = xy'2 + 1 and has exactly one singular solution. 

4. yy'2 = xy' + 1 and has exactly one singular solution 

2. The solution of the initial value problem 

      3" sec on 0, /2 with 0 1, ' 0 0y y y y      is 

1.   3

0

sin sec cosy t x t dt x    

2.   3

0

sin sec siny t x t dt x    

3.   3

0

cos sec siny t x t dt x    

4.   3

0

cos sec cosy t x t dt x    

3. On a certain domain D 2 ¡  it is given that u is harmonic and u = 

1 on the circle {(x,y) | 2 2 1x y  } D and u = 2 on the circle {(x, 

y) | 2 2 9x y  } D 

Then which of the following hold: 

1. D can be whole of R2  
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2. On the largest possible domain D the function u is bounded. 

3. u takes value 3 on the 2 2 4x y   

4. u takes value 3 on 2 2 81x y   

4. Given 4 points A, B, C and D (in that order) along a parallelogram 

whose sides have slopes + 1
c

in the (x, t) plane and u is a solution of 

the wave equation 

 2 0u xxu c u  . 

Suppose u(A) = 1
2

, u(C) = 1
4

, u(B) = 2
3

. The u (D) equals. 

1. 1
6

 2. 1
12

 

3. 1
3

 4. 7
12

 

5. The solution of the PDE 3u ux y u
x y
 

 
 

 with initial data 

   ,1 1u x x x  is 

1. 2 2xy x y  2. 3 3xy x y  

3. 2 2 2xy x y  4. 2 2xy x y  

6. Let Pn(x) be the Taylor polynomial of degree 0n   for the function 

ex about x = 0. Then the error in this approximation is 

1. 
!

nx e
n

  for some 0 <  < x 
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2. 
 1 !

nx e
n




 for some 0 <  < x 

3. 
1

!

nx e
n




 for some 0 <  < x 

4. 
 

1

1 !

nx e
n





 for some 0 <  < x 

7. Let {e1, e2, e3}be a basis of a vector space V over ¡ . Consider the 

following gets:  

 A = {e2, e1 + e2, e1, e2 + e3} 

 B = {e1, e1 + e2, e1, e2 + e3} 

 C = {e2, e1 + e2, e1, e2 + e3} 

1. A and B are bases of V. 

2. A and C are bases of V. 

3. B and C are bases of V. 

4. Only B is a basis of V.  

8. Let A be an n × m matrix and b = (b1, b2, bn)1.  

Consider the following statements:  

(a) If rank A = n, the system has a unique solution 

(b) If rank A < n, the system has infinitely many solutions. 

(c) If b = 0, the system has at least one solution. 

Which of the following is correct? 

1. (a) and (b) are true.  
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2. (a) and (c) are true. 

3. only (a) is true. 

4. only (b) is true. 

9. Let 
0 1 1

A 1 0 1
1 1 0

 
   
 
 

 Then the eigenvalues of A are  

1. 2, a and 0 

2. 2, a+1 and 1–1 

3. 2, –1 and –1 

4. 1, –1 and 0 

10. Let 
cos sin

A
sin cos

 
 

 
  
 

 be such that A has real eigenvalues. Then 

1. for some integer nn     

2. 2 / 2 for some integer nn n     

3. There is no restriction on . 

4.  = 2n+/4 for some integer n. 

11. Let A = (an)be an n×n matrix with real entries such that the sum of 

all the entries in each row is zero. Consider the following 

statements: 

(a) A is non-singular. 

(b) A is singular. 

(c) 0 is an eigenvalue of A. 
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Which of the following is correct?  

1. Only (a) is true. 

2. (a) and (c) are true. 

3. (b) and (c) are true. 

4. Only (c) is true. 

12. Let 
1 2 2
2 1 2
2 2 1

A
 
 
 
 

 Then the minimal polynomial of A is 

1. 2 4 5    

2. 2 5 4    

3. 3 23 9 5      

4. 3 23 9 5      

13. Let A = (aij) be an n×n matrix such that aij = 3 for all i and j. Then 

the nullity of A is 

1. n – 1 

2. n – 3 

3. n 

4. 0 

14. Let A be a non-zero matrix of order 8 with A2 = 0, Then one of the 

possible value for rank of A is 

1. 5 2. 6 
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3. 4 4. 8 

15. Let W =   3, , : 0x y z x y z   ¡  with standard dot product in 

3¡ . Then an orthonormal basis of W is. 

1.      1, , 0,1, , 0,0,1o o o  

2.      1 1 11,1,1 , 1,0, 1 , 0,1, 1
3 2 2

   
 

 

3.      1 1 11,0, 1 , 1,0, 1 , 0,1, 1
2 2 2

    
 

 

4.    1 11,1, 2 , 1, 1,0
6 2

   
 

 

16. Let 
3 2 2

A 2 3 2 .
2 2 3

 
   
 
 

 Then the equation XtAX = 1, where X = (x1, 

x2, x3)t represents 

1. a hyperboloid of two sheets. 

2. an ellipsoid. 

3. a pair of planes. 

4. a paraboloid. 

17. Let w denote a complex cube root of unity. The cube roots of the 

complex number -2 + 2i are 

1.     21 , 1 , 1i i w i w    

2.     21 , 1 , 1i i w i w    
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3.      1 1 1 21 , 1 , 1i i w i w      

4.      1, 1 1 21 , 1 , 1i i w i w      

18. Let    2

0
1 cos n

n
f z n z





   have the Taylor series expansion 

 
0

n
n

n
f z a z





  around 0. Then 

1. 2 30, 1a a    

2. 2 3
1 , 1
2

a a     

3. 2 3
1 , 0
2

a a   

4. 2 30, 0a a   

19. Let f(x, y) = u(x, y) + i v(x, y), where u (x, y) = x2–y2 and v(x, y) = 

- 2xy. Then 

1. f is complex differentiable 

2. u, v are differentiable and u v
x y
 


 

 

3. u, v are differentiable and u v
y x
 


 

 

4. The function g(z) = f(z) is complex differentiable. 

20. Let :f £ £  be a non constant holomorphic function. Which of 

the following can occur? 

1. Range of  :| | 1f w w  £   
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2. Range of  : 0f w Rew  £  

3. Range of  :1 | | 2f w w   £  

4. Range of  : 0f w w  £  

21. Let f be an analytic function on the open unit disc D taking values 

in D such that f(0) = 0. Which of the following is possible? 

1. f(1/2) = 3/4 

2. f(1/2) = 1/3 

3. f(1/2) = (3/4) 1 

4. f(1/2) = ei  

22. Let  be the curve in the complex plane  

 
2

2

1 1 0
0 1

it

it

e t
t

e t






     
  

  
 

Then 1 1 equals
2 r

dz
pi z a   

1. 0 for all a£  

2. 0 if and only if 

    :| 1| 1 :| | 1a z z z z   U  

3. 0 for all    :| 1| 1 :| | 1a z z z z   I  

4. 1 if and only if 

   :| 1| 1 :| | 1a z z z z   U  
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23. Let map the points –2,2az bw
cz d





 

 and   to i, 1, -i. Let D  :| | 1z z   

 The points i, 1+i will be mapped: 

1. inside D 

2. outside D 

3. one inside D and the other outside D 

4. both on the boundary of D 

24. 6 boys and 6 girls leave their umbrellas outside the classroom. 

Then the number of ways in which every person picks up one 

umbrella in such a way that all the boys get girls umbrellas are 

1. 6 2. 12! 

3. 12 4. (6!)2 

25. 5 people take a lift at the ground floor of a building with three 

floors. The number of ways in which at least one person gets out at 

each of the three floors 1, 2 and 2 is  

1. 150 2. 21 

3. 243 4. 10 

26. Let G be the group of symmetries of a rhombus. Then G is 

isomorphic to  

1. the trivial group {e}. 2. 2¢  

3. 2 2×¢ ¢  4. 4¢  
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27. Let  = (1,3,5,7,9,11) and  = (2, 4, 6, 8) be two permutations in 

S100, where S100 denotes the symmetric group on {1,2, …, 100}. 

Then the order of  is   

1. 4 2. 6 

3. 12 4. 100 

28. The number of groups of order 121, up to isomorphism, is 

1. 1 2. 2 

3. 11 4. 10 

29. Let G a non-abelian group of order 21. Let H be a Sylow 3-

subgroup and K be a Sylow 7-sub group of G. Then 

1. H and K are both normal in G 

2. H is normal but K is NOT normal in G 

3. K is normal but H is NOT normal in G. 

4. Neither H nor K is normal in G. 

30. Let    5f x x¢Z  be a polynomial such that    5 /x f x¢Z  is a 

field, where  f x  denotes the ideal generated by  f x . Then 

one of the choices for f (x) is 

1. 2 1x   2. 2 3x   

3. 3 1x   4. 3 3x   

31. Let A = {1,2,3…,2n} where 2.n   Let B, a subset of A, be of size 

m. Then the smallest value of m for which the set B must have two 

co-prime numbers is.  
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1. 2 2. n – 1 

3. n 4. n + 1 

32. The ODE 3" siny y x   is solved by the method of undetermined 

coefficients. The simplest form of the particular solution (i.e. one 

with least number of undetermined coefficients) is 

1. Asin Bcos Csin3 Dcos3x x x x    

2. Asin Bcos C sin3 D cos3x x x x x x    

3. A sin B  cos Csin3 Dcos3x x x x x x    

4. Asin B cos C sin D cos Esin3 Fcos3 .x x x x x x x      

33. Let y1(x), y2(x) be two eigenfunctions corresponding to distinct 

eigenvalues of the Sturm-Liouville problem  

  " 0;y x y    

 with boundary condition y(0) = 0 = y(1), where q(x) is positive and 

y1(x) > 0 on (0,1). Which of the following is NOT true?  

1.      
1

1 2
0

0q x y x y x dx   

2. y1(x) and y2(x) are linearly independent. 

3. y2(x) must vanish at most once on (0, 1). 

4. y2(x) must vanish at least once on (0, 1). 
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34. For an approximate computation of 1 ,


 based on Newton-Raphson 

method, where  is a positive real number, the function f(x) in the 

interaction formula  1 , 0n nx f x n    has the form   

1.  1x x  2.  2x x  

3.  1x   4.  2x x  

35. Let    
1

2

1

' yJ y y e xy dx


  be a functional defined on  1 1,1C   

Then the variation of J[y] is  

1.  
1

0
1

" ' 2 'y yy e e y xyy dx


   

2.  
1

2 2

1

' 2 'yy e y xyy dx


   

3.  
1

1

[ ' 2 ']y yy e xy y e y dx 


   

4.  
1

2

1

[ ' 2 ']y yy e xy y y e y dx 


    

36. Consider the functional    
2

4 3

1

' 2 'J y xy yy dx   defined on 

      1/ 1,2  and 1 0, 2 1S y y C y y      

1. a weak minimum on y = x –1 

2. a strong minimum on y = x –1 

3. a weak maximum on y = x –1 
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4. a strong maximum on y = x–1 

37. limsup  1
: 1,2,...

2

n

n n
  
 
  

 is  

1. 0 2. 1
4

 

3. 1 4. –1 

38. Let   25 7 , , 3nP x x x x nodd n    . Fix 

  |S x P x    ¡ ¡ . Then 

1. S is empty 

2. S is finite and non empty 

3. S is countably infinite 

4. S is uncountable 

39. Let (xn) and (yn) be sequences of real numbers where xn = (1)n (sin 

n) and yn = (–1)nn. Then 

1. (xn) and (yn) both have convergent subsequences. 

2. None of the two sequences (xn), (yn) have a convergent 

subsequence. 

3. (xn) does not have a convergent subsequence while j(yn) has. 

4. (xn) has a convergent subsequence while (yn) does not have. 

40. Let :f ¥ ¡  be any function such that f takes values in ¢ . 

Assume that lim f(n) exists. Then 

1. f is a constant 
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2. There exists l, m ¢ , l m  such   1f m  and   1f l are 

infinite.  

3.  1f  ¥  and   1 ... ,... 2, 1f n     are infinite. 

4. There exists k¥  such that lim
n

 f (n) = f (k) 

41. Let x be in ¡ . Then the series 
1

n nx e


  is 

1. always convergent 

2. converges only at x = 0 

3. converges if x < e 

4. converges if |x|<e 

42. Let :f ¡ ¡  be given by    ,f x x the greatest integer less 

than or equal to x. Then  

1. The points at which f is not continuous is countable. 

2. The points at which f is not continuous is ¡ .  

3. f is of bounded variation. 

4. f is strictly increasing. 

43. Let f:    0,1 0,1  be a strictly increasing onto function. Then 

1. f is continuous but f is not. 

2. f and f 1 are both continuous. 

3. f 1 is continuous but f is not. 
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4. f 1 is not Riemann integral on [0, 1]. 

44. Let   2 2,P x y a bx cy dx exy fy       be a polynomial 

function of two variables such that P(0, 0) is a local minimum. 

Then  

1. bc   0 

2. b = 0 and c   0 

3. b   0 and c = 0 

4. b = 0 and c = 0 

45. Let 2:f ¡ ¡  be such that f
x



 and f
y



 exist at all points. Then 

1. The total derivative of f exists at all points of 2¡ .  

2. f is continuous on 2¡ . 

3. The function f(x, y) as a function of x for every fixed y and 

f(x, y) as a function of y for every fixed x are continuous. 

4. All directional derivatives of f exist at all points of 2¡ . 

46. Let C be the standard Cantor's middle third set. Then 

1. C is not measurable 

2. C is countable and of measure zero 

3. C is uncountable and of measure zero. 

4. C is uncountable and of positive measure. 

47. Let S = {(x, y)  2¡  : x2 – y = 0 }. 



www.csirnetmathssolutions.com 

16 
 

 Then 

1. S is connected but not compact. 

2. S is not connected and not compact. 

3. S is not connected but compact. 

4. S is connected and compact. 

48. Let V be the vector space of all 5 × 5 real skew-symmetric 

matrices. Then the dimension of is 

1. 20 2. 15 

3. 10 4. 5 

49. Which of the following is a degenerate kernel? 

1.  
1

, n n

n
k x t x t





   2.   | | 1, xk x t e   

3.   | |, x tk x t e   4.  , xtk x t e  

50. A solution of the integral equation  1

0

3 3
x

x xt e    is 

1.   3 xx e   

2.   1 3 zx e    

3.   1 log3x x    

4.   log3x x   

51. In a conservative field of motion, which of the following statement 

is not correct. 
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1. generalized coordinates do not depend on time explicitly  

2. all forces are derivable from the potential 

3. potential energy is explicitly a function of time. 

4. the total energy is constant 

52. If the Lagrangian of a dynamical system is 2 21 cos
2

L ml mgl    

then the corresponding Hamiltonian is 

1. 2 21 cos
2

H ml mgl    

2. 2 21 cos
2

H ml mgl    

3. 2 21 cos
2

H ml mgl 


   

4. 2 21 cos
2

H ml mgl 
   

 

NOTE:- Questions after this are for statistics students only  and 

therefore aren’t included here. 


