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Part-B

1. The ODE for the family of straight lines y :%H where tis a
parameter that takes positive values is
1. yy'=xy?+ 1 and has no singular solutions.
2. yy?=xy' + 1 and has no singular solutions.
3. yy' =xy?+ 1 and has exactly one singular solution.
4. yy'2 =xy'+ 1and has exactly one singular solution
2. The solution of the initial value problem

y"+y=sec’xon [0,7z/2)with y(0)=1,y'(0)=0 is

1. y:jsin(t—x)sec3tdt+cosx
0

2. y:jsin(t—x)sec3tdt+sinx
0

3. y:jcos(t—x)sec3tdt+sinx
0

4, y:Icos(t — x)sec’tdt + cos x
0

3. On a certain domain D — i ? it is given that u is harmonic and u =
1 on the circle {(x,y) | x*+ y®> =1} <D and u = 2 on the circle {(x,
y) | x*+y*=9} <D

Then which of the following hold:

1. D can be whole of R2
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2. On the largest possible domain D the function u is bounded.

3. utakesvalue 3 on the x* + y* =4

4. utakesvalue 3on x*+y* =81

4, Given 4 points A, B, C and D (in that order) along a parallelogram
whose sides have slopes i% in the (x, t) plane and u is a solution of
the wave equation
u,—c’u, =0.

Suppose u(A) = % u(C) = % u(B) = % The u (D) equals.

1. 1 2. 1
12

3. 2 5. L
3 12

5. The solution of the PDE xg—u+y%u:3u with initial data
X

u(x,1)=x(1-x)is
1. xy? —x%y 2. xy*-x%y
3. xy? —x%y? 4.  xy—xy?

6. Let P,(x) be the Taylor polynomial of degree n>0 for the function

e*about x = 0. Then the error in this approximation is

n

X
1. —|e‘5 for some 0 < £< x
n!
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n

2. X et forsome0 < E<x
(n+1)!
n+1
3. ' e° forsome 0 < £<x
n!
n+l
4, e° for some 0 < £< x

(n+1)!

Let {e1, e, es}be a basis of a vector space V over j . Consider the

following gets:
A={exe1+e, €€ +es}
B={ej,e +e, ee+es}
C={exe;+e, €6 +es}
1. Aand B are bases of V.
2. Aand C are bases of V.
3. Band C are bases of V.
4. Only B is a basis of V.

Let A be an n x m matrix and b = (by, by, bn)™.

Consider the following statements:

(@) Ifrank A =n, the system has a unique solution

(b) If rank A < n, the system has infinitely many solutions.
(c) Ifb =0, the system has at least one solution.

Which of the following is correct?

1. (a) and (b) are true.
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2. (a)and (c) are true.

3. only (a) is true.

4. only (b) is true.

Let A Then the eigenvalues of A are

Il
=k O

1
0
1

[ N S

1. 2,aand0

2. 2,atland1-1

3. 2,-land-1

4. 1,-1andO0
cosfd —sind

Let A=| | be such that A has real eigenvalues. Then
sin@ cosé

1. 6 =nxfor some integer n
2.  0=2nxz+nx/2 for some integer n

3. There is no restriction on 0.
4. 0 =2nn+n/4 for some integer n.

Let A = (an)be an nxn matrix with real entries such that the sum of
all the entries in each row is zero. Consider the following

statements:
(@ Aisnon-singular.
(b) Aissingular.

(c) 0 isan eigenvalue of A.
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Which of the following is correct?
1. Only (a) is true.

2. (a)and (c) are true.

3. (b) and (c) are true.

4. Only (c) is true.

(1 2 2)
Let A:LZ 1 ZJ Then the minimal polynomial of A is
2 2 1
1. A?-41-5
2. A*+51+4

3. A*-31°-91-5
4. 2*+31°-91+5

Let A = (a;) be an nxn matrix such that a; = 3 for all i and j. Then
the nullity of A is

1. n-1
2. n-3
3..n
4. 0

Let A be a non-zero matrix of order 8 with A? = 0, Then one of the

possible value for rank of A is

1. 5 2. 6
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3. 4 4. 8

LetW = {(x,y,z)e *:x+y+2z=0} with standard dot product in

i . Then an orthonormal basis of W is.

1. {(10,0)(0,1,0),(0,0,1)}

1 1 1
2. {ﬁ(l’l’l)’_z(l'0’_1)’_2(0’1’_1)}
1 1 1
3 {ﬁ(l,0,—1),ﬁ(1,0,—1),—2(0,1,—1)}
1 1
4, {%(1,1,—2),$(1,—1,0)}
3 2 2
Let A=|2 3 2. Then the equation X'AX = 1, where X = (X,
2 2 3

X,, X3)' represents

1. ahyperboloid of two sheets.
2. an ellipsoid.

3. apairof planes.

4. aparaboloid.

Let w denote a complex cube root of unity. The cube roots of the

complex number -2 + 2i are
L 1-i,(1-i)w,(1-i)w

2. 1+i,(1+1)w,(1+i)w’



18.

19.

20.

www.csirnetmathssolutions.com
3. (1-i) 5, (1-i) T w(1-i) W
N1, -1 N1 9
4. (1+1) 7, (A+1) w,(1+i) w
Let f inz 1- cosz " have the Taylor series expansion
n=0

= a,z" around 0. Then

1. a,=0,a,=-
1
2 aZ:—E,aS:—l
1
3 az—E,agzo

4. a,=0,a,=0

Let f(X, y) = u(x, y) + i v(X, y), where u (x, y) = x’-=y? and v(X, y) =
- 2xy. Then

1. fis complex differentiable

2. U,V are differentiable and a_u :@
oy

3. u, Vv are differentiable and a_u :?
X

4. The function g(z) = f(z) is complex differentiable.

Let f:£ —£ Dbe anon constant holomorphic function. Which of

the following can occur?

1. Rangeof fc{wef :|wl1}

7
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2. Rangeof f c{wef :Rew>0}
3. Rangeof f c{wef 1<wl2}
4. Rangeof f c{wef :w=0}

Let f be an analytic function on the open unit disc D taking values
in D such that f(0) = 0. Which of the following is possible?

1. f(1/2)=3/4

2. f(1/2)=1/3

3. f(1/2) = (3/4)1
4. f1/2)=¢

Let y be the curve in the complex plane

—1+e?™t _1<t<0
m):{ - }

g2t 0<t<1

Then — —dz equals
2p|j “

1. Oforallaef

2. Oifandonly if
ag{z:]z+1k1}U{z:|z]<1}

3. Oforall ag{z:|z+11}I {z:|z|<1}

4. 1lifandonly if

ag{z:|z+1<l}U{z:|z|<1}
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az+b
cz+d

Let w=

map the points -2, 2

and o« toi, 1, -i. LetD ={z:|z|<1}

The points i, 1+i will be mapped:

1. inside D

2. outside D

3. oneinside D and the other outside D
4. both on the boundary of D

6 boys and 6 girls leave their umbrellas outside the classroom.
Then the number of ways in which every person picks up one

umbrella in such a way that all the boys get girls umbrellas are
1. 6 2. 12!
3. 12 4. (6

5 people take a lift at the ground floor of a building with three
floors. The number of ways in which at least one person gets out at

each of the three floors 1, 2 and 2 is
1. 150 2. 21
3. 243 4. 10

Let G be the group of symmetries of a rhombus. Then G is

isomorphic to

1. the trivial group {e}. 2. ¢,

3. ¢,x¢, 4. ¢,
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Let o =(1,3,5,7,9,11) and B = (2, 4, 6, 8) be two permutations in
S100, Where S;oo denotes the symmetric group on {1,2, ..., 100}.

Then the order of af is

1. 4 2. 6

3. 12 4. 100

The number of groups of order 121, up to isomorphism, is
1. 1 2. 2

3. 11 4. 10

Let G a non-abelian group of order 21. Let H be a Sylow 3-
subgroup and K be a Sylow 7-sub group of G. Then

1. Hand K are both normal in G

2. Hisnormal but K isNOT normal in G

3. Kisnormal but H isNOT normal in G.

4. Neither H nor K is normal in G.

Let f(x)e&;[x] be a polynomial such that Z.[x]/(f(x)) isa

field, where ( f (x)) denotes the ideal generated by f (x). Then

one of the choices for f (x) is
1. x*+1 2. x*+3
3. x*+1 4,  xX*+3

Let A={1,2,3...,2n} where n>2. Let B, a subset of A, be of size
m. Then the smallest value of m for which the set B must have two

co-prime numbers is.

10



32.

33.

www.csirnetmathssolutions.com

1. 2 2. n-1

3. n 4, n+1

The ODE y"+y =sin®x is solved by the method of undetermined

coefficients. The simplest form of the particular solution (i.e. one

with least number of undetermined coefficients) is

1. Asinx=+Bcosx+ Csin3x+ Dcos3x

2. Asinx+ Bcosx+ Cxsin3x + Dxcos3x

3. Axsinx+ Bx cosx+ Csin3x + Dcos3x

4. Asinx+ B cosx+ Cxsinx + Dxcos+ Esin3x + Fcos3x.

Let y1(x), y2(X) be two eigenfunctions corresponding to distinct

eigenvalues of the Sturm-Liouville problem
y"+Ap(x)y=0;

with boundary condition y(0) = 0 = y(1), where q(x) is positive and
y1(X) > 0 on (0,1). Which of the following is NOT true?

1

1. Iq(x)yl(x)yz(x)dx:o

0
2. yi1(x) and y,(x) are linearly independent.
3. Y»(x) must vanish at most once on (0, 1).

4.  y,(X) must vanish at least once on (0, 1).

11
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: : 1
For an approximate computation of —, based on Newton-Raphson
(04

method, where o is a positive real number, the function f(x) in the

interaction formula x,,; = f (x,),n>0 has the form
1. x(1-ax) 2. x(2-ax)

3. x(1-«a) 4, X(2+ax)

1
Let J[y]= j(y'ey + xyz)dx be a functional defined on C*[-1,1]
-1

Then the variation of J[y] is

1. Jl.(y"ey +ely'+ 20xyy')dx
-1

2. j(y'zey +y° +2xyy')dx
1

3. j[(y'ey +2xy)5y+ey5y']dx
“1
4. j[(y'ey +2Xy + y2)5y+ey5y']dx

-1
2

Consider the functional J[y]= I(xy"‘— 2yy'3)dx defined on
1

s={y/yeC[12] andy(1)=0,y(2)=1}
1. aweak minimumony=x-1
2. astrong minimumony =x-1

3. aweak maximumony =x-1
12
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4. astrong maximumony = x-1

limsup {%:m,z,..} is

3. 1 4, -1
Let P(x)=x"+5x>+7x,nodd,n>3. Fix
aeiS={xej |P(X)=a}. Then

1. Sisempty

2. Sisfinite and non empty

3. Siscountably infinite

4. Sisuncountable

Let (X,) and (y,) be sequences of real numbers where x, = (1)" (sin
n) and y, = (=1)"n. Then

1. (xn) and (y,) both have convergent subsequences.

2. None of the two sequences (xn), (yn) have a convergent

subsequence.
3. (x,) does not have a convergent subsequence while j(y,) has.
4. (xn) has a convergent subsequence while (y,) does not have.

Let f:¥ —j be any function such that f takes values in ¢ .

Assume that lim f(n) exists. Then

1. fisaconstant
13
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2. Thereexists|, m ¢, | #m such ffl({m}) and ffl({l})are
infinite.
3. f7(¥)and f’l({...—n,...—z,—l}) are infinite.

4. There exists k e ¥ such that lim f (n) =f (k)

Let x be in j . Then the series Zx”e*n is
1

1. always convergent

2. convergesonlyatx =0
3. convergesifx<e

4. converges if |x|<e

Let f:j — begivenby f(x)=[x], the greatest integer less

than or equal to x. Then

1. The points at which f is not continuous is countable.
2. The points at which f is not continuous is j .

3. fisof bounded variation.

4. fisstrictly increasing.

Let f: [0,1] —[0,1] be astrictly increasing onto function. Then

1. fis continuous but f is not.
2. fand f?are both continuous.

3. flis continuous but f is not.

14
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4. flis not Riemann integral on [0, 1].

Let P(x,y)=a+bx+cy+dx’+exy+ fy* be a polynomial

function of two variables such that P(0, 0) is a local minimum.
Then

1. bc#0
2. b=0andc=0
3. b#0andc=0

4, b=0andc=0

Let f:j 2> besuch that Z—f and Z—f exist at all points. Then
X y

1. The total derivative of f exists at all points of j 2.

2. fiscontinuouson j 2

3. The function f(x, y) as a function of x for every fixed y and

f(x, y) as a function of y for every fixed x are continuous.
4. All directional derivatives of f exist at all points of j z,
Let C be the standard Cantor's middle third set. Then
1. Cisnot measurable
2. Ciscountable and of measure zero
3. Cisuncountable and of measure zero.

4. Cisuncountable and of positive measure.

LetS={(x,y)ei ?:x-y=0}.

15
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Then

1. Sis connected but not compact.

2. Sis not connected and not compact.
3. Sisnot connected but compact.

4. Sisconnected and compact.

Let V be the vector space of all 5 x 5 real skew-symmetric

matrices. Then the dimension of is

1.

3.

20 2. 15

10 4. 5

Which of the following is a degenerate kernel?

1.

3.

k(x,t):ix”t” 2. k(x,t)=e""
n=1
k(xt)=e"" 4. k(xt)=e"

A solution of the integral equation j3x’1¢>(t) =3e" is

1.
2.
3.
4,

In a conservative field of motion, which of the following statement

0
D (x)=3e*

®(x)=1-3e’
®(x)=1-xlog3

®(x)=xlog3

IS not correct.

16
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1. generalized coordinates do not depend on time explicitly
2. all forces are derivable from the potential
3. potential energy is explicitly a function of time.

4. the total energy is constant

If the Lagrangian of a dynamical system is L = %mlzé?2 —mglcosé

then the corresponding Hamiltonian is

1. H :%mlzez+mglcose
1 202

2. H :Eml 6° —mglcoso
_1 202

3. H :?ml 6° —mglcosf

4. H :;mlze2 +mglcosd

NOTE:- Questions after this are for statistics students only and

therefore aren’t included here.
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