Part-B

June – 2010

- 1. Let f, $g: \pounds \to \pounds$ be given by $f(z) = |z|^2$; $g(z)=z^2$. Then
 - 1. f and g are analytic on \pounds
 - 2. f is not analytic and g is analytic on \pounds .
 - 3. f is analytic and g is not analytic on ${\tt \pounds}$.
 - 4. neither f nor g in analytic on \pounds .

2. Let
$$f(x) =_{n \to 0}^{\lim}$$

$$\tan\left(\frac{nx+x^n}{n}\right), x \in \left[0, \frac{1}{2}\right].$$
 Then the function f is

- 1. Continuous but not uniformly continuous.
- 2. Uniformly continuous.
- 3. not continuous.
- 4. not defined.
- 3. Let $f:[0,1] \rightarrow i$ be the function given by

$$f(x) = 1$$
 if $0 \le x \le 0.5$
2 if $0.5 < x \le 0.7$
3 if $0.7 < x \le 1$

Then

1. f is not Riemann integrable and f is not Lebesgue integrable

2. f is Riemann integrable and
$$\int_{0}^{1} f(x) dx = 1.8^{\circ}$$

3. F is Riemann integrable and
$$\int_{0}^{1} f(x) dx = 2.1$$

- f is not Riemann integrable but f is Lebesgue integrable 4.
- Let V be the vector space of polynomials of degree < 5 over ; . Let 4. $D: V \rightarrow V$ be the derivative map $P \rightarrow p^1$. Then
 - 0 is the only eigenvalue of D 1.
 - 1 is an eigenvalue of D 2.
 - 5 is an eigenvalue of D 3.
 - D is invertible 4.
- 5. Let A = Q, the set of rational numbers, and B = $[e, \pi]$. Then
 - A is connected and B is not connected 1.
 - 2. A is not connected and B is not connected
 - 3. A is not connected and B is connected
 - A is connected and B is connected 4.
- The form $f(x, y) = x^2 4xy + 5y^2$ on ;² is 6.
 - symmetric and positive definite 1.
 - 2. not symmetric, but positive definite
 - 3. symmetric, but not positive definite

2

- 4. neither symmetric positive definite
- 7. Given a square-matrix A over ; with characteristic polynomial $(x-1)^2 x$ and number of distinct Jorden canonical forms is
 - 1. 1 2. 2
 - 3. 3 4. 4

8. If
$$f_n(x) = e^{\frac{-x^3}{n}}, x \in [0,1], n = 1, 2, ..., \text{ the } \lim_{n \to \infty} \int_0^1 f_n(x) dx$$

- 1. does not exist
- 2. exists and equals 1.
- 3. exists and equals 0
- 4. exists and equals e.
- 9. Let $A: \mathfrak{t}^n \to \mathfrak{t}^n$ be a Hermitian linear map, $Av_1 = v_1$ and $Av_2 = 2v_2 \neq 0$, $v_2 \neq 0$. Then
 - 1. $||v_1 + v_2||^2 = ||v_1||^2 + ||v_2||^2$
 - 2. $||v_1 + v_2|| < ||v_1|| + ||v_2||$
 - 3. $||v_1 v_2|| = ||v_1|| ||v_2||$
 - 4. $||v_1 v_2|| = ||v_1|| + ||v_2||$
- 10. A Class of 10 students has to first select a committee of 3 students and among the 3 students selected, one student is declared the president, another student is declared the vice-president and the

third person is selected as secretary of the committee. In how many way can this be done?

1.
$$\frac{10!}{3!}$$
 ways

2. 120 ways

- 3. 720 ways
- 4. 10! ways

11. Let
$$f(x) = \frac{\sin x}{x}$$
 and $g(x) = \frac{\sin x}{\sqrt{x}}$, $x \in [0, 1]$. Then the improper

integrals

1.
$$\int_{0}^{1} g(x) dx$$
 exists and $\int_{0}^{1} f(x) dx$ does not exist

2.
$$\int_{0}^{1} f(x) dx$$
 exists and $\int_{0}^{1} g(x) dx$ does not exist

3.
$$\int_{0}^{1} f(x) dx$$
 and $\int_{0}^{1} g(x) dx$ exist

4.
$$\int_{0}^{1} f(x) dx$$
 and $\int_{0}^{1} g(x) dx$ do not exist

12. Let $E = \{2n+r | r \in \mathbb{X} | [0,1/2]\}$ and $n \in \mathbb{Y}$. Then the boundary of E in ; is

4

1.
$$\bigcup_{n=1}^{\infty} [2n, 2n+1/2]$$

2. E

www.csirnetmathssolutions.com

3. i

4. even integers

13. Let
$$V = \{ (x_1, ..., x_{100}) \in ; {}^{100} : x_1 = ... = x_{50} \text{ and } x_{51} + x_{52} + ... + x_{100} = 0 \}$$

Then

- 1. dim V = 98
- 2. dim V = 59
- 3. dim V = 49
- 4. dim V = 50
- 14. The system of simultaneous linear equations

$$x + y + z = 0$$

$$x - y - z = 0$$

has

- 1. no solution in $\frac{3}{1}$.
- 2. a unique solution in $\frac{1}{3}$.
- 3. infinitely many solutions in $\frac{3}{100}$.
- 4. More than 2 but finitely many solutions in $\frac{1}{3}$.
- 15. Let $P(3) = \{a_0 + a_1x + a_2x^2 + a_3x^3 | a \in i, i = 0, 1, 2, 3\}$

Under the standard operation of addition (+) and scalar multiplication (.), P(3) is

- 1. not a vector space
- 2. a vector space of infinite
- 3. dimension
- 4. a | vector space of dimension 4
- 16. If A is a real 2×2 matrix such that $A^2 A = 0$, then

1. either A =
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 or A = $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

- 2. there are infinitely many such matrices A.
- 3. there are only finitely many such matrices A.
- 4. A has to be a diagonal matrix
- 17. Let A and B be upper triangular matrices given by

$$A = \begin{pmatrix} 1 & \cdot \\ 2 & 0 \\ 0 & 0 \end{pmatrix} and B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ \cdot & 0 & n-1 \end{pmatrix}$$

Then

- 1. A is invertible and B is singular
- 2. A is singular and B is invertible
- 3. both A and B are invertible
- 4. Neither A nor B is invertible
- 18. Given that a 3 × 3 matrix satisfies the equation $A^3 - A^2 + A - I = 0$, the value of A⁴ is

- 1. not computable from the given data
- 2. $-A^3 A^2 + A I = 0$
- 3. 0
- 4. I
- 19. Let A and B be finite sets of m and n elements respectively. Then the number of functions f: $A \rightarrow B$ is
 - 1. mn 2. m+n
 - 3. mⁿ 4. n^m
- 20. Let A be the $n \times n$ matrix with all entries equal to 1. The eigenvalues of A are
 - 1. 0 with multiplicity (n-1) and n with multiplicity 1
 - 2. 0 with multiplicity 1 and n with multiplicity (n-1)
 - 3. 0 with multiplicity 1 and 1 with multiplicity 1
 - 4. with multiplicity 1 and 1 with multiplicity 1.
- 21. Let $a_n = \frac{4^{3n}}{3^{4n}} n = 1, 2, ...$ Then the sequence (a_n)
 - 1. is unbounded
 - 2. is bounded but not convergent
 - 3. converges to 0
 - 4. converges to 1

www.csirnetmathssolutions.com

22. Sup
$$\left\{\left(\sqrt{n+1}-\sqrt{n}\right)\right\}$$
 and

1.
$$\sqrt{2} + 1$$
 and 0 respectively

2.
$$\frac{1}{\sqrt{2}+1}$$
 and 0 respectively

3. both equal to 0

4. both equal to
$$\frac{1}{\sqrt{2}+1}$$

- 23. Let (x_n) be a Cauchy sequence of real members. Then the sequence $(\cos x_n)$ is
 - 1. unbounded
 - 2. bounded but not Cauchy
 - 3. Cauchy but not bounded
 - 4. Cauchy
- 24. The number of generators of a cyclic group of order 12 is
 - 1. one 2. two
 - 3. three 4. four
- 25. The set $\{x \in (-\pi, \pi) : \sin x \ge 1/2\}$ is
 - 1. an open interval
 - 2. a union of finitely many disjoint open intervals
 - 3. a union of countably infinitely many disjoint open intervals

- 4. a union of uncountably many disjoint open intervals
- 26. Up to an isomorphism, the number of groups of order 33 is
 - 1. 3 2. 11
 - 3.14.Infinitely many
- 26. Let R = x [x]. Let I be the principal ideal $\langle x^2 + 1 \rangle$ and J be the principal ideal $\langle x^2 \rangle$. Then
 - 1. R/I is a field and R/J is a field
 - 2. R/I is an integral domain and R/J is a field
 - 3. R/I is a field and R/J is a PID
 - 4. R/I is a field and R/J is not an integral domain
- 27. The polynomial ring ϕ [x] is
 - 1. a Euclidean domain but not a PID
 - 2. a PID but not Euclidean
 - 3. Neither PID nor Euclidean
 - 4. both PID and Euclidean
- 28. The polynomial $x^3 7x^2 + 15x 9$ is
 - 1. irreducible over both ϕ and ϕ_3
 - 2. irreducible over ϕ but reducible over ϕ_3
 - 3. reducible over ϕ but irreducible over $\phi_{3.}$
 - 4. reducible over both Z and $\phi_{3.}$

- A permutation a of {1, 2,..., n} is called a derangement if α(i) ≠ i
 for every i. Let d_n denote the number of derangements of {1, 2, ...n}. Then d₄ is equal to
 - 1. 3 2. 9
 - 3. 12 4. 24
- 30. The equation $z^3 + 2z + 50 = 0$ has
 - 1. a solution in $\{z \in \mathfrak{t} : |z| < 1\}$
 - 2. no solution in $\{z \in \mathfrak{L} : |z| < 1\}$
 - 3. infinitely many solutions in \pounds .
 - 4. a solution in $\{z \in f: 1 < |z| < 2\}$
- 31. The number of subfields of a finite field of order 3¹⁰ is equal to
 - 1. 4 2. 5
 - 3. 3 4. 10
- 32. The Mobius transformation mapping (0, 1, ∞) into (1, ∞ , 0) respectively, maps
 - 1. real numbers into real numbers
 - 2. purely imaginary numbers into purely imaginary numbers
 - 3. unit circle into unit circle
 - 4. real numbers into unit circle
- 33. $f: \pounds \to \pounds$ is analytic and f(z) is real for all z in C. Then

10

www.csirnetmathssolutions.com

- 1. f is bounded
- 2. f is not bounded
- 3. such an f does not exist
- 4. f has a singularity at $z = \infty$

34. If
$$\gamma$$
 is the circle of radius $\frac{1}{2}$ with center 1, then $\int_{0}^{1} \frac{dz}{z^2 - z}$ is

3.
$$2\pi i$$
 4. $\frac{1}{2\pi i}$

35. If γ is the square with vertices 0, 1, 1 + i and i, then $\int_{z} dz$ is

- 1. 1 2. 0
- 3. 4 4. 2πί

36. Consider the linear homogeneous differential equation

 $y^{(n)} + P_1(x)y^{(n+1)} + ... + P_n(x)y = 0$ on [0, 1], where $P_{1,...}P_n$ are continuous real valued functions on [0, 1]. Then the set of solutions of the above equation.

- 1. is a linear space of infinite dimension
- 2. is a linear space of dimension n
- 3. is a linear space of dimension less than n
- 4. is not a linear space

- 37. The singularities of $\frac{1}{z-z^3}$ in the extended complex plane are
 - 1. 3 poles of order 1
 - 2. 1 pole of order 1 and 1 pole of order 2
 - 3. 3 poles of order 1 and an essential singularity at ∞
 - 4. 3 poles of order 1 and a removable singularity at ∞
- 38. The eternizing curve for the functional

$$F(y,z)dx$$
 with $F_{y'y'}Fz'z'-(fy'z')^2 \neq 0$,

- 1. is uniquely determined
- 2. is a member of an infinite family of curves lying in a plane
- 3. belongs to a family of curves in space
- 4. does not exist
- 39. Let u and v be two solutions of y⁽²⁾ + P(x)y⁽¹⁾ + Q(x)y = 0 on [a, b]. Let W(u, v) denote the Wronskian determinant of u and v. Then
 - W (u, v) vanishes at a point x₀ ∈ [a,b] ⇒ u and v are linearly dependent.
 - 2. W(u, v) vanishes identically on $[a,b] \Rightarrow$ u and v are linearly independent.
 - W(u, v) vanishes at a point on [a, b] but does not vanish identically.

- 4. W(u, v) does not vanish at any point on [a, b] but u and v are linearly dependent.
- 40. The Legendre's equation

$$\left[\left(1 - x^2 \right) y^{(1)} \right]^{(1)} p(p+1) y = 0$$

on the interval [0, 1] has

- 1. both 0 and 1 as regular singular points
- 2. both 0 and 1 as regular points
- 3. a regular singular point at 0 and a regular pint at 1
- 4. a regular point at 0 and a regular singular point at 1.
- 41. An extremum of the functional

$$\int_0^1 \left[(y')^2 + 12xy \right] dx, \quad y(0) = 0, y(1)$$

= 1 can occur only along the curve

- 1. $x(1-x)e^x$
- 2. $(1-x)x^2$
- 3. *x*²
- 4. *x*³
- 42. For arbitrary real valued smooth functions f and g, the function u defined as

$$u(x,t) = f(x+t) + g(x-t)$$
 is a general solution of

- 1. $u_u + u_x = 0$
- $2. \quad u_u + u_{xx} = 0$
- $3. \quad u_u + u_{xx} = 0$
- 4. $u_u u_{xx} = 0$
- 43. Let u(x,t) solve the heat equation $u_t u_{xx} = 0, 0 < x < \pi, 0 < t < \infty$

$$u(x,0) = \sin x, 0 < x < \pi$$
 $u(0,t) = u(\pi t) = 0$ t > 0 The u

- 1. is unbounded in $(0,\pi) \times (0,\infty)$
- 2. takes both positive and negative values in $(0,\pi) \times (0,\infty)$
- 3. is negative in $(0,\pi) \times (0,\infty)$
- 4. $u(x,t) \le e^{-t}$, for all $(x,t) \in (0,\pi) \times (0,\infty)$
- 44. Given the following data

i	0	1	2
Xi	0	1	2
f(x _i)	1	3	2

an approximate value of f (0.5), using Newton's interpolation, is

- 1. 1.234 2. 1.832
- 3. 2.301 4. 2.375
- 45. Let $f \in C^{4}[x_{-1}, x_{1}], f_{i} = f(x_{i}) and f_{i}' = f$

 (x_i) , and $f_i = f'(x_i)$ and so forth,

where $x_i - x_0 + ih, i = 0, \pm 1$ with h > 0.

Then there exists a point $\xi \in (x_{-1}, x_1)$

such that

$$f_0'' = \frac{1}{h^2} (f_{-1} - 2f_0 + f_1) + e(\xi)$$
, where the error e (ξ) is given by

- 1. $hf''(\xi)/2$
- 2. $-h^2 f'''(\xi)/6$
- 3. $h^3 f^{(IV)}(\xi)/12$
- 4. $-h^2 f^{(N)}(\xi)/12$
- NOTE :- Questions after this are for statistics students only and therefore aren't included here.