Part-B

June - 2010

1. Let $f, g: £ \rightarrow £$ be given by $f(z)=|z|^{2} ; g(z)=z^{2}$. Then
2. fand gare analytic on $£$
3. f is not analytic and g is analytic on $£$.
4. f is analytic and g is not analytic on $£$.
5. neither f nor g in analytic on $£$.
6. Let $f(x)==_{n \rightarrow 0}^{\lim }$
$\tan \left(\frac{n x+x^{n}}{n}\right), x \in\left[0, \frac{1}{2}\right] .$. Then the function f is
7. Continuous but not uniformly continuous.
8. Uniformly continuous.
9. not continuous.
10. not defined.
11. Let $f:[0,1] \rightarrow i$ be the function given by

$$
\begin{array}{r}
f(x)=1 \text { if } 0 \leq x \leq 0.5 \\
2 \text { if } 0.5<x \leq 0.7 \\
3 \text { if } 0.7<x \leq 1
\end{array}
$$

Then

1. f is not Riemann integrable and f is not Lebesgue integrable
2. f is Riemann integrable and $\int_{0}^{1} f(x) d x=1.8^{0}$
3. F is Riemann integrable and $\int_{0}^{1} f(x) d x=2.1$
4. f is not Riemann integrable but f is Lebesgue integrable
5. Let V be the vector space of polynomials of degree <5 over i . Let
$D: V \rightarrow V$ be the derivative map $P \rightarrow p^{1}$. Then
6. 0 is the only eigenvalue of D
7. 1 is an eigenvalue of D
8. 5 is an eigenvalue of D
9. D is invertible
10. Let $A=Q$, the set of rational numbers, and $B=[e, \pi]$. Then
11. A is connected and B is not connected
12. A is not connected and B is not connected
13. A is not connected and B is connected
14. A is connected and B is connected
15. The form $f(x, y)=x^{2}-4 x y+5 y^{2}$ on i^{2} is
16. symmetric and positive definite
17. not symmetric, but positive definite
18. symmetric, but not positive definite
19. neither symmetric positive definite
20. Given a square-matrix A over i with characteristic polynomial $(x-1)^{2} x$ and number of distinct Jorden canonical forms is
21. 1
22. 3
23. 4
24. If $f_{n}(x)=e^{\frac{-x^{3}}{n}}, x \in[0,1], n=1,2, \ldots$, the $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$
25. does not exist
26. exists and equals 1.
27. exists and equals 0
28. exists and equals e.
29. Let $A: £^{n} \rightarrow £^{n}$ be a Hermitian linear map, $A v_{1}=v_{1}$ and $A v_{2}=2 v_{2} \neq 0, v_{2} \neq 0$. Then
30. $\left\|v_{1}+v_{2}\right\|^{2}=\left\|v_{1}\right\|^{2}+\left\|v_{2}\right\|^{2}$
31. $\left\|v_{1}+v_{2}\right\|<\left\|v_{1}\right\|+\left\|v_{2}\right\|$
32. $\left\|v_{1}-v_{2}\right\|=\left\|v_{1}\right\|-\left\|v_{2}\right\|$
33. $\left\|v_{1}-v_{2}\right\|=\left\|v_{1}\right\|+\left\|v_{2}\right\|$
34. A Class of 10 students has to first select a committee of 3 students and among the 3 students selected, one student is declared the president, another student is declared the vice-president and the
third person is selected as secretary of the committee. In how many way can this be done?
35. $\frac{10!}{3!}$ ways
36. 120 ways
37. 720 ways
38. 10! ways
39. Let $f(x)=\frac{\sin x}{x}$ and $g(x)=\frac{\sin x}{\sqrt{x}}, x \in[0,1]$. Then the improper integrals
40. $\int_{0}^{1} g(x) d x$ exists and $\int_{0}^{1} f(x) d x$ does not exist
41. $\int_{0}^{1} f(x) d x$ exists and $\int_{0}^{1} g(x) d x$ does not exist
42. $\int_{0}^{1} f(x) d x$ and $\int_{0}^{1} g(x) d x$ exist
43. $\int_{0}^{1} f(x) d x$ and $\int_{0}^{1} g(x) d x$ do not exist
44. Let $\mathrm{E}=\{2 n+r \mid r \in \mathbb{X} \mathrm{I}[0,1 / 2]\}$ and $\mathrm{n} \in \neq\}$. Then the boundary of E in i is
45. ${\underset{n=1}{\infty}[2 n, 2 n+1 / 2] ~] ~}_{\text {U }}$
46. E
47. i
48. even integers
49. Let $V=\left\{\left(x_{1}, \ldots, x_{100}\right) \in{ }^{100}: x_{1}=\ldots=x_{50}\right.$ and $\left.x_{51}+x_{52}+\ldots+x_{100}=0\right\}$

Then

1. $\operatorname{dim} \mathrm{V}=98$
2. $\operatorname{dim} \mathrm{V}=59$
3. $\operatorname{dim} \mathrm{V}=49$
4. $\operatorname{dim} \mathrm{V}=50$
5. The system of simultaneous linear equations

$$
\begin{aligned}
& x+y+z=0 \\
& x-y-z=0 \\
& \text { has }
\end{aligned}
$$

1. no solution in i^{3}.
2. a unique solution in i^{3}.
3. infinitely many solutions in i^{3}.
4. M ore than 2 but finitely many solutions in i^{3}.
5. Let $P(3)=\left\{\mathrm{a}_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \mid a \in i, i=0,1,2,3\right\}$

Under the standard operation of addition (+) and scalar multiplication (.), $\mathrm{P}(3)$ is

1. not a vector space
2. a vector space of infinite
3. dimension
4. a| vector space of dimension 4
5. If A is a real 2×2 matrix such that $A^{2}-A=0$, then
6. either $\mathrm{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ or $\mathrm{A}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$
7. there are infinitely many such matrices A.
8. there are only finitely many such matrices A.
9. A has to be a diagonal matrix
10. Let A and B be upper triangular matrices given by

$$
A=\left(\begin{array}{ccc}
1 & & \cdot \\
2 & 0 \\
0 & 0 & n
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
1 & & 0 \\
1 & & 0 \\
\cdot & 0 & \\
\cdot & & n-1
\end{array}\right)
$$

Then

1. A is invertible and B is singular
2. A is singular and B is invertible
3. both A and B are invertible
4. Neither A nor B is invertible
5. Given that a 3×3 matrix satisfies the equation $A^{3}-A^{2}+A-I=0$, the value of A^{4} is
6. not computable from the given data
7. $-A^{3}-A^{2}+A-I=0$
8. 0
9. I
10. Let A and B be finite sets of m and n elements respectively. Then the number of functions $f: A \rightarrow B$ is
11. mn
12. $m+n$
13. m^{n}
14. n^{m}
15. Let A be the $\mathrm{n} \times \mathrm{n}$ matrix with all entries equal to 1 . The eigenvalues of A are
16. 0 with multiplicity ($\mathrm{n}-1$) and n with multiplicity 1
17. 0 with multiplicity 1 and n with multiplicity ($n-1$)
18. 0 with multiplicity 1 and 1 with multiplicity 1
19. with multiplicity 1 and 1 with multiplicity 1 .
20. Let $a_{n}=\frac{4^{3 n}}{3^{4 n}} n=1,2, \ldots$. Then the sequence $\left(a_{n}\right)$
21. is unbounded
22. is bounded but not convergent
23. converges to 0
24. converges to 1
25. $\operatorname{Sup}\{(\sqrt{n+1}-\sqrt{n})\}$ and
26. $\sqrt{2}+1$ and 0 respectively
27. $\frac{1}{\sqrt{2}+1}$ and 0 respectively
28. both equal to 0
29. both equal to $\frac{1}{\sqrt{2}+1}$
30. Let $\left(x_{n}\right)$ be a Cauchy sequence of real members. Then the sequence $\left(\cos x_{n}\right)$ is
31. unbounded
32. bounded but not Cauchy
33. Cauchy but not bounded
34. Cauchy
35. The number of generators of a cyclic group of order 12 is
36. one
37. two
38. three
39. four
40. The set $\{x \in(-\pi, \pi): \sin x \mid>1 / 2\}$ is
41. an open interval
42. a union of finitely many disjoint open intervals
43. a union of countably infinitely many disjoint open intervals
44. a union of uncountably many disjoint open intervals
45. Up to an isomorphism, the number of groups of order 33 is
46. 3
47. 11
48. 1
49. Infinitely many
50. Let $R=\mathfrak{a}[x]$. Let I be the principal ideal $\left\langle x^{2}+1\right\rangle$ and J be the principal ideal $\left\langle x^{2}\right\rangle$. Then
51. R / I is a field and R / J is a field
52. R / I is an integral domain and R / J is a field
53. R / I is a field and R / J is a PID
54. $R / /$ is a field and R / J is not an integral domain
55. The polynomial ring $\phi[x]$ is
56. a Euclidean domain but not a PID
57. a PID but not Euclidean
58. Neither PID nor Euclidean
59. both PID and Euclidean
60. The polynomial $x^{3}-7 x^{2}+15 x-9$ is
61. irreducible over both ϕ and ϕ_{3}
62. irreducible over ϕ but reducible over ϕ_{3}
63. reducible over ϕ but irreducible over ϕ_{3}.
64. reducible over both Z and ϕ_{3}.
65. A permutation a of $\{1,2, \ldots, \mathrm{n}\}$ is called a derangement if $\alpha(i) \neq i$ for every i. Let d_{n} denote the number of derangements of $\{1,2$, ...n\}. Then d_{4} is equal to
66. 3
67. 12
68. 9
69. 24
70. The equation $z^{3}+2 z+50=0$ has
71. a solution in $\{z \in \mathfrak{£}:|z|<1\}$
72. no solution in $\{z \in \mathfrak{£}:|z|<1\}$
73. infinitely many solutions in $£$.
74. a solution in $\{z \in £: 1<|z|<2\}$
75. The number of subfields of a finite field of order 3^{10} is equal to
76. 4
77. 3
78. 10
79. The Mobius transformation mapping ($0,1, \infty$) into ($1, \infty, 0$) respectively, maps
80. real numbers into real numbers
81. purely imaginary numbers into purely imaginary numbers
82. unit circle into unit circle
83. real numbers into unit circle
84. $f: £ \rightarrow £$ is analytic and $\mathrm{f}(\mathrm{z})$ is real for all z in C . Then
85. f is bounded
86. f is not bounded
87. such an f does not exist
88. f has a singularity at $z=\infty$
89. If γ is the circle of radius $\frac{1}{2}$ with center 1 , then $\int_{.0} \frac{d z}{z^{2}-z}$ is
90. 0
91. 1
92. $2 \pi \mathrm{i}$
93. $\frac{1}{2 \pi i}$
94. If γ is the square with vertices $0,1,1+i$ and i, then $\int_{z} d z$ is
95. 1
96. 0
97. 4
98. $2 \pi i$
99. Consider the linear homogeneous differential equation
$y^{(n)}+P_{1}(x) y^{(n+1)}+\ldots+P_{n}(x) y=0$ on $[0,1]$, where $P_{1}, \ldots P_{\mathrm{n}}$ are continuous real valued functions on $[0,1]$. Then the set of solutions of the above equation.
100. is a linear space of infinite dimension
101. is a linear space of dimension n
102. is a linear space of dimension less than n
103. is not a linear space
104. The singularities of $\frac{1}{z-z^{3}}$ in the extended complex plane are
105. 3 poles of order 1
106. 1 pole of order 1 and 1 pole of order 2
107. 3 poles of order 1 and an essential singularity at ∞
108. 3 poles of order 1 and a removable singularity at ∞
109. The eternizing curve for the functional
$F(y, z) d x$ with $F_{y^{\prime} y}, F z^{\prime} z^{\prime}-\left(f y^{\prime} z^{\prime}\right)^{2} \neq 0$,
110. is uniquely determined
111. is a member of an infinite family of curves lying in a plane
112. belongs to a family of curves in space
113. does not exist
114. Let u and v be two solutions of $y^{(2)}+P(x) y^{(1)}+Q(x) y=0$ on [a, b]. Let $W(u, v)$ denote the Wronskian determinant of u and v. Then
115. $\mathrm{W}(\mathrm{u}, \mathrm{v})$ vanishes at a point $x_{0} \in[a, b] \Rightarrow \mathrm{u}$ and v are linearly dependent.
116. $\mathrm{W}(\mathrm{u}, \mathrm{v})$ vanishes identically on $[a, b] \Rightarrow \mathrm{u}$ and v are linearly independent.
117. $W(u, v)$ vanishes at a point on $[a, b]$ but does not vanish identically.
118. $\quad W(u, v)$ does not vanish at any point on $[a, b]$ but u and v are linearly dependent.
119. The Legendre's equation

$$
\left[\left(1-x^{2}\right) y^{(1)}\right]^{(1)} p(p+1) y=0
$$

on the interval $[0,1]$ has

1. both 0 and 1 as regular singular points
2. both 0 and 1 as regular points
3. a regular singular point at 0 and a regular pint at 1
4. a regular point at 0 and a regular singular point at1.
5. An extremum of the functional
$\int_{0}^{1}\left[\left(y^{\prime}\right)^{2}+12 x y\right] d x, \quad y(0)=0, y(1)$
$=1$ can occur only along the curve
6. $x(1-x) e^{x}$
7. $(1-x) x^{2}$
8. x^{2}
9. x^{3}
10. For arbitrary real valued smooth functions f and g, the function u defined as $u(x, t)=f(x+t)+g(x-t)$ is a general solution of
11. $u_{u}+u_{x}=0$
12. $u_{u}+u_{x x}=0$
13. $u_{u}+u_{x x}=0$
14. $u_{u}-u_{x x}=0$
15. Let $u(x, t)$ solve the heat equation $u_{t}-u_{x x}=0,0<x<\pi, 0<t<\infty$
$u(x, 0)=\sin x, 0<x<\pi u(0, t)=u(\pi t)=0 t>0$ The u
16. is unbounded in $(0, \pi) \times(0, \infty)$
17. takes both positive and negative values in $(0, \pi) \times(0, \infty)$
18. is negative in $(0, \pi) \times(0, \infty)$
19. $u(x, t) \leq e^{-t}$, for all $(x, t) \in(0, \pi) \times(0, \infty)$
20. Given the following data

i	0	1	2
x_{i}	0	1	2
$f\left(x_{i}\right)$	1	3	2

an approximate value of $f(0.5)$, using Newton's interpolation, is

1. 1.234
2. 1.832
3. 2.301
4. 2.375
5. Let $f \in C^{4}\left[x_{-1}, x_{1}\right], f_{i}=f\left(x_{i}\right) a n d f_{i}{ }^{\prime}=f$
' $\left(x_{i}\right)$, and $f_{i}^{\prime \prime}=f^{\prime \prime}\left(x_{i}\right)$ and so forth,
where $x_{i}-x_{0}+i h, i=0, \pm 1$ with $h>0$.

Then there exists a point $\xi \in\left(x_{-1}, x_{1}\right)$
such that
$f_{0}{ }^{\prime \prime}=\frac{1}{h^{2}}\left(f_{-1}-2 f_{0}+f_{1}\right)+e(\xi)$, where the error $\mathrm{e}(\xi)$ is given by

1. $h f^{\prime \prime}(\xi) / 2$
2. $-h^{2} f^{\prime \prime \prime}(\xi) / 6$
3. $h^{3} f^{(I V)}(\xi) / 12$
4. $-h^{2} f^{(I V)}(\xi) / 12$

NOTE :- Questions after this are for statistics students only and therefore aren't included here.

